
DRAFT

Deliverable D1.1

Data Modelling and interaction mechanisms – v1

Editor(s): Franz Deimling

Responsible Partner: Fabasoft R&D GmbH

Status-Version: Final - v1.0

Date: 31.07.2024

Type: R

Distribution level (SEN, PU): PU

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 39

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D1.1 - Data Modelling and interaction mechanisms – v1

Due Date of Delivery to the EC 31.07.2024

Workpackage responsible for the
Deliverable:

WP1 - Concept and methodology of EMERALD

Editor(s): Franz Deimling (FABA)

Contributor(s): CNR, FABA, FhG, SCCH, TECNALIA

Reviewer(s):
Iñaki Etxaniz, Gorka Benguria Elguezabal, Cristina
Martínez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, WP5

Abstract: Initial version of the overview of data models and
techniques used for creating and linking the data to
evidence (annotation, etc)

Keyword List: Data diagram, data model, component overview

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/

Disclaimer: Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 39

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 27.03.2024 First draft version FABA

v0.2 27.06.2024 Comments and suggestions received
by consortium partners

WP1 partners

v0.3 30.06.2024 Contributions from component
partners added

WP2 and WP3 partners

v0.4 09.07.2024 Figures and listings updated FABA, Tecnalia, FhG

v0.5 19.07.2024 QA Review TECNALIA

v0.6 24.07.2024 Addressed all comments received in
the Internal QA review

FABA

v1.0 31.07.2024 Submitted to the European
Commission

TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 39

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

2 Data Model Overview .. 9

3 Component Data Models .. 11

3.1 Evidence Collector Data Models .. 13

3.1.1 AI-SEC ... 13

3.1.2 AMOE ... 14

3.1.3 Clouditor-Discovery ... 15

3.1.4 Codyze ... 17

3.1.5 eknows ... 18

3.2 Trustworthiness System (TWS) Data Model .. 20

3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data Model 21

3.4 Repository of Controls and Metrics (RCM) Data Model .. 22

3.5 Orchestrator Data Model... 25

3.6 Evidence Store Data Model ... 27

3.7 Assessment Data Model .. 27

3.8 Evaluation Data Model .. 28

4 Interactive Documentation ... 30

4.1 PlantUML ... 30

4.2 Web Service ... 30

4.2.1 Implementation details ... 31

4.3 Data model versioning ... 31

5 Data Exchange and Formats .. 33

5.1 Interaction mechanisms between components .. 33

5.2 Sequence diagrams .. 35

6 Conclusions .. 37

7 References ... 38

APPENDIX: Release 1.0.9 of Architecture and Data Modelling ... 39

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 39

www.emerald-he.eu

 List of figures

FIGURE 1. EMERALD DATA DIAGRAM .. 10
FIGURE 2. OVERVIEW OF THE EMERALD COMPONENTS.. 12
FIGURE 3. OVERVIEW OF THE AI-SEC COMPONENT DATA MODEL .. 13
FIGURE 4. OVERVIEW OF THE AMOE COMPONENT DATA MODEL .. 15
FIGURE 5. OVERVIEW OF THE CLOUDITOR-DISCOVERY COMPONENT DATA MODEL 16
FIGURE 6. CODYZE COMPONENT OVERVIEW ... 18
FIGURE 7. OVERVIEW OF THE EKNOWS COMPONENT DATA MODEL ... 19
FIGURE 8. OVERVIEW OF THE TRUSTWORTHINESS SYSTEM COMPONENT DATA MODEL 20
FIGURE 9. OVERVIEW OF THE MARI COMPONENT DATA MODEL .. 22
FIGURE 10. OVERVIEW OF THE RCM COMPONENT DATA MODEL ... 24
FIGURE 11. OVERVIEW OF THE ORCHESTRATOR COMPONENT DATA MODEL .. 26
FIGURE 12. OVERVIEW OF THE EVIDENCE STORE COMPONENT DATA MODEL ... 27
FIGURE 13. OVERVIEW OF THE ASSESSMENT COMPONENT DATA MODEL ... 28
FIGURE 14. OVERVIEW OF THE EVALUATION COMPONENT DATA MODEL ... 29
FIGURE 15. INTERACTIVE SVG - HIGHLIGHT NEIGHBOURS ON CLICK .. 30
FIGURE 16. LANDING PAGE OF THE INTERACTIVE DOCUMENTATION .. 31

 List of listings

LISTING 1. EXAMPLE OF VIRTUAL MACHINE PROPERTIES... 17
LISTING 2. AMOE EVIDENCE IN JSON ... 33
LISTING 3. CLOUDITOR EXAMPLE EVIDENCE IN JSON ... 34
LISTING 4. A EUCS REQUIREMENT MAPPING IN OSCAL .. 35

http://www.emerald-he.eu/
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/EMERALD/WP1/Deliverables/D1.1%20-%20Data%20modelling%20and%20interaction%20mechanisms%20-%20v1/Final/EMERALD_D1.1_Data-modelling-and-interaction-mechanisms-v1_v1.0.docx%23_Toc173351649
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/EMERALD/WP1/Deliverables/D1.1%20-%20Data%20modelling%20and%20interaction%20mechanisms%20-%20v1/Final/EMERALD_D1.1_Data-modelling-and-interaction-mechanisms-v1_v1.0.docx%23_Toc173351666
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/EMERALD/WP1/Deliverables/D1.1%20-%20Data%20modelling%20and%20interaction%20mechanisms%20-%20v1/Final/EMERALD_D1.1_Data-modelling-and-interaction-mechanisms-v1_v1.0.docx%23_Toc173351667
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/EMERALD/WP1/Deliverables/D1.1%20-%20Data%20modelling%20and%20interaction%20mechanisms%20-%20v1/Final/EMERALD_D1.1_Data-modelling-and-interaction-mechanisms-v1_v1.0.docx%23_Toc173351668

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 39

www.emerald-he.eu

Terms and abbreviations

AIC4 Artificial Intelligence Cloud Service Compliance Criteria Catalogue

AMOE Assessment and Management of Organisational Evidence

API Application Programming Interface

AST Abstract Syntax Tree

BSI Bundesamt für Sicherheit in der Informationstechnik

CI/CD Continuous Integration / Continuous Delivery

CLI Command Line Interface

CSP Cloud Service Provider

DoA Description of Action

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GASTM Generic Abstract Syntax Tree

gRPC gRPC Remote Procedure Call (created by Google)

JSON JavaScript Object Notation

KPI Key Performance Indicator

MARI Mapping Assistant for Regulations with Intelligence

NLP Natural Language Processing

OSCAL Open Security Controls Assessment Language

PDF Portable Document Format

PNG Portable Network Graphics

RCM Repository of Controls and Metrics

REST Representational State Transfer

SARIF Static Analysis Results Interchange Format

SVG Scalable Vector Graphics

TRL Technology Readiness Level

TWS Trustworthiness System

UML Unified Modelling Language

UUID Universally Unique Identifier

WP Work Package

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 39

www.emerald-he.eu

Executive Summary

This deliverable, the first version of the data modelling and interaction mechanisms, provides
an initial report on the data diagrams, design and documentation of the EMERALD framework
and its components. The goal of the corresponding task T1.1 in work package 1 is to coordinate
the different types of data shared between the components of WP2, WP3 and WP4. The
deliverable provides an overview of the data model, as well as the setup of the interactive
documentation. Furthermore, the data exchange and formats are described.

D1.1 lays the foundation of the data model – the underlying work of Task 1.1. The resulting
documentation serves as a common ground to develop the different components and their APIs.
It should offer a high-level overview of the components – displaying the flow of the data.
Technical details can be found in the overall data diagram and data format descriptions.
Additionally, an overview per component is provided, so as not to be overwhelmed by details,
and to be able to focus only on parts of the EMERALD framework.

The document is structured in four main parts – the data model, the component overview, the
interactive documentation and finally the data exchange and format description. It starts by
giving detailed insights into the data classes used in EMERALD. The following section summarizes
each component, starting with the evidence collectors (WP2) and continues with the different
components of WP3. In the interactive documentation section, the technical setup of the
documentation is described. Finally, the plans for the interaction mechanisms are outlined.

There will be a second version of this deliverable (D1.2 in M18), which will include updates to
the data model and interaction mechanisms. The next steps will be for the different components
to implement the data classes and APIs which will be described in the respective component
deliverables. Depending on the requirements coming from the pilots (WP5), workflows (WP4)
and technical work packages (WP2 and WP3), updates to the data diagrams will be included in
the release cycle of the web service and included in the future version of this deliverable.

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 39

www.emerald-he.eu

1 Introduction

This section explains the goal and purpose of the deliverable, its context and its structure.

1.1 About this deliverable

This deliverable is the first release of the task T1.1 “Data modelling and information sharing
mechanisms” of WP1 of the EMERALD project [1]. It shall provide an overview of the data model
that is used in the EMERALD framework. Furthermore, the deliverable provides an overview of
each component’s data and how it is linked to other components. The goal is to provide insights
of the current state of the data used in EMERALD and how it is organized. A second version of
this deliverable will be D1.2, which is due to in M18.

The data model will be used by all the components in collaboration with WP2 and WP3 as well
as the EmeraldUI component that will be developed in WP4. The interaction mechanism
between the different software components will be described and preferred data formats will
be presented to facilitate data access and sharing.

The task uses the existing data classes of the components and focuses on providing relevant
information to the different partners, unfamiliar to the different components. Different
abstraction layers will be used to provide an overview and detailed insights. The diagrams will
be adjusted over the course of the project and adopted to the requirements of the different
components. In order not to lose track of any changes, dedicated processes (see Section 4.3)
have been set up to check this.

1.2 Document structure

The document is organized into four main sections:

• Data model

• Component overview

• Interactive documentation

• Data exchange and formats

The data model overview section, Section 2, depicts and describes the current state of the whole
data model used in EMERALD. It shall give detailed insights into the inter-component
relationships of the EMERALD data.

In order to have a more abstract view and not get lost in the details, an overview of the
components is provided in Section 3. This section contains a subsection dedicated to each
EMERALD component.

Section 4 describes the deployment and core implementation of the interactive documentation
approach used to share the data model within the EMERALD project. There are three
subsections, starting with a section describing PlantUML and how it is used to create the
diagrams. This is followed by a description of the web service. Finally, the process on versioning
and updating the diagrams is described.

Section 5 describes the different formats used in the project and how the components
communicate. The deliverable is summarized in Section 6.

Finally, the current release of the interactive documentation can be found in the APPENDIX:

Release 1.0.9 of Architecture and Data Modelling .

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 39

www.emerald-he.eu

2 Data Model Overview

This section describes the current version of the EMERALD data model. The model describes the
different data classes as well as their connections within and between components. The goal is
to provide insights to developers and users of the EMERALD framework. Therefore, the data
diagram is presented in an interactive system1 that is explained in more detail in Section 4. There
are different abstraction layers, to allow for a “drill down” on the details.

Figure 1 shows the resulting data model for the whole EMERALD framework2. It depicts each
component in a separate box, whereas the background colour denotes the EMERALD work
package to which it is related. Evidence collection components (WP2) are coloured in orange,
and WP3 components are coloured in teal. Each component box contains the data classes that
are relevant for other developers and inter-component communication. Component specific
information can be found in the respective subsection of Section 3.

This version of the data model is loosely based on the data model that was created in a similar
predecessor project called MEDINA3 - the MEDINA data model was reported in deliverable D5.24.
The EMERALD project uses some of the components that were part of the MEDINA data model
– such the Evidence Store, the Orchestrator, the Repository of Controls and Metrics (RCM) and
the Trustworthiness System. Data classes related to components not relevant to EMERALD were
excluded.

Please note that the Questionnaire is a subcomponent of the RCM and is therefore shown with
a dedicated box in Figure 1. However, as the Questionnaire data model is quite large, it is not
shown in Figure 1 but in the RCM component overview (see Figure 10).

1 https://models.emerald.digital.tecnalia.dev/
2 Please note that an enlarged view of the EMERALD data model is available in APPENDIX: Release 1.0.9
of Architecture and Data Modelling.
3 https://medina-project.eu/
4 https://medina-project.eu/wp-
content/uploads/2023/05/MEDINA_D5.2_MEDINA_RequirementsDetailed_architectureDevOps_infrastr
ucture_v2_v1.0.pdf

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/
https://medina-project.eu/
https://medina-project.eu/wp-content/uploads/2023/05/MEDINA_D5.2_MEDINA_RequirementsDetailed_architectureDevOps_infrastructure_v2_v1.0.pdf
https://medina-project.eu/wp-content/uploads/2023/05/MEDINA_D5.2_MEDINA_RequirementsDetailed_architectureDevOps_infrastructure_v2_v1.0.pdf
https://medina-project.eu/wp-content/uploads/2023/05/MEDINA_D5.2_MEDINA_RequirementsDetailed_architectureDevOps_infrastructure_v2_v1.0.pdf

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 39

www.emerald-he.eu

Figure 1. EMERALD data diagram

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 39

www.emerald-he.eu

3 Component Data Models

This section describes each EMERALD component from a data-oriented point of view. It covers
the different evidence extraction tools, where the evidence is stored and assessed, and the tools
that provide and assist with the management of the security schemes and metrics. The different
views have been integrated in the interactive documentation (see APPENDIX: Release 1.0.9 of
Architecture and Data Modelling and can be reached via links.

Figure 2 depicts an abstracted view of the main EMERALD components and serves as a starting
point for users as well as developers. The diagram shows the general data flow between all the
components. The direction of the arrows indicates the direction the data flows. As also explained
in the legend, a dashed line indicates that a component at the end of the arrow pulls data from
the component at the other end, while a full line indicates that a component actively pushes
data to another component using its API. The components are coloured according to the
respective work package they are related to. The colour – work package associations can be
found in the legend (see Figure 2).

Please note that the legend has been omitted in the figures of the component overviews to save
space, as the information is redundant.

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 39

www.emerald-he.eu

Figure 2. Overview of the EMERALD Components

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 39

www.emerald-he.eu

3.1 Evidence Collector Data Models

All the evidence collector components developed in WP2 collect different forms of data and
extract evidence. The results are then shared in the EMERALD framework. This section describes
relevant data classes used internally by them and how they relate to other components. The
main connections of these components are to the Evidence Store and the Repository of
Controls and Metrics.

Furthermore, the subsections below describe the main techniques for transforming raw
evidence data into the EMERALD evidence class objects. Part of the data classes of the
components (e.g., Clouditor-Discovery) are based on the CertGraphOntology model (the
EMERALD Graph Ontology), which is described in D2.1 [2]. Please note that the
CertGraphOntology is not a component, but a central ontology for storing evidence in a graph-
based format.

3.1.1 AI-SEC

AI-SEC is an evidence collection tool that extracts various information from ML models. The data
model of the tool currently consists of a single main class, AI-SECEvidence, which represents the
extracted evidence (see Figure 3). Evidence results and closely related information are also
stored in the AI-SECEvidence class (result). This class also contains a unique identifier (id), given
resources, such as data and model (sourceFilename), and the criteria used for extracting
evidence (criteriaId).

AI-SEC employs various measurements to extract evidence from ML models. By providing AI-
SEC with a set of data and a trained model, the tool can extract evidence and information about
different properties of the model. The output results (evidence and information) can be a string,
a vector or a matrix, depending on the measurement used.

Measurement methods are chosen on the basis of the Criteria Catalogue for AI Cloud Services –
AIC45, such as adversarial robustness or explainability of the model. A detailed description of the
annotation plan and process will be provided in two future dedicated deliverables D2.6 “ML
model certification–v1” (M12) and D2.7 “ML model certification–v2” (M24).

Figure 3. Overview of the AI-SEC component data model

5 https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-
Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html

http://www.emerald-he.eu/
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 39

www.emerald-he.eu

3.1.2 AMOE

The AMOE – Assessment and Management of Organisational Evidence – component extracts
evidence from policy PDF documents. The component stores the uploaded files, as well as
relevant metadata related to the document and metrics. At the moment of writing, there are
two main data classes in the data model (see Figure 4): AmoePolicyFile and AmoeEvidence.
AmoePolicyFile serves as an internal representation of the uploaded file, which can be linked to
a Cloud Service via it’s id, while AmoeEvidence is the internal representation of the extracted
data and is created for a set of Security Metrics during the extraction process. The evidence
result is stored in the AmoeEvidence class in closely related fields, such as context or
complianceComment.

The data is stored in a MongoDB6 and can be retrieved through the AMOE API endpoints. The
internal data classes of AMOE will change in the next few months, according to the requirements
elicited for EmeraldUI (detailed in D4.1 [3]) and further development of AMOE.

AMOE is using an NLP (Natural Language Processing) based approach to extract evidence. It
utilizes pre-trained models to select text of the policy documents that are relevant for audits.
The models used at the moment of writing are specialized on different aspects, such as question
answering or computing text representations (embeddings) or text classification. The extracted
text passages are then stored in AmoeEvidence. The relevant information stored in
AmoeEvidence will be transformed into an Evidence class object and will be forwarded to the
Evidence Store component. Details on the approach of the AMOE component and its related
Task 2.3 will be reported in two future dedicated deliverables D2.4 “AMOE–v1” (M12) and D2.5
“AMOE–v2” (M24).

To ensure high quality output from AMOE, it is necessary to associate the text samples of the
with the Security Metrics. Therefore, AmoeEvidence is directly related to the SecurityMetric class
of the Repository of Controls and Metrics (see full data model in Figure 1, AMOE data model in
Figure 4, and RCM data model in Figure 10). The plans on annotation and the detailed
description of the process will be conducted in the Task 2.3 and reported in the previously stated
deliverables.

Furthermore, AmoeEvidence is related to the Orchestrator (Cloud Service) and the Evidence
Store (AssessmentResult, Evidence), and AmoeFile is related to the Orchestrator (Cloud Service)

Finally, the information from AMOE can be accessed via API and used via the upcoming
EmeraldUI.

6 https://www.mongodb.com/

http://www.emerald-he.eu/
https://www.mongodb.com/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 39

www.emerald-he.eu

Figure 4. Overview of the AMOE component data model

3.1.3 Clouditor-Discovery

The Clouditor-Discovery component is an evidence gathering tool which extracts Cloud
configurations for different Cloud resources (e.g., Virtual Machine, Object Storage, Network
Interface) from several Cloud providers (e.g., Azure) via API calls.

The retrieved Cloud configuration information is stored in an internal Resource class object with
the properties according to the respective definition in the EMERALD Graph Ontology (see D2.1
[2]). An example of a Resource object of a Virtual Machine can be found in Listing 1.

Besides the Resource class object, the Clouditor-Discovery stores the gathered information in
the ClouditorDiscoveryEvidence class object, which is the same class object as the Evidence
provided by the Evidence Store component (see Figure 5). Evidence objects are stored in the
Evidence Store component, a description of the Evidence can be found in Section 3.6.

The link from the Orchestrator to the cloud_service_id property in the
ClouditorDiscoveryEvidence class refers to the Cloud Service defined in the Orchestrator
component.

Details on the approach of the Clouditor-Discovery component and its related Task 2.5 will be
reported in two future dedicated deliverables D2.8 “Runtime evidence extractor–v1” (M12) and
D2.9 “Runtime evidence extractor–v2” (M24).

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 39

www.emerald-he.eu

Figure 5. Overview of the Clouditor-Discovery component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 39

www.emerald-he.eu

Listing 1. Example of Virtual Machine properties

3.1.4 Codyze

The Codyze component is a static source code analysis tool which analyses source code of
applications comprising Cloud services and assesses security-relevant implementation details.
The analysis report presents implementation details that meet or respectively violate specified
security requirements. As part of a CI/CD pipeline, Codyze acts as a quality and compliance gate
allowing only the delivery of applications that meet security requirements and preventing it
otherwise. Each update to the application’s source code or new release can trigger an execution
of the CI/CD pipeline and thereby Codyze. In addition, manual or scheduled assessments are
possible.

Codyze is developed in Kotlin7 and uses a graph-based representation of source code utilizing
the concept of a code property graph. The resulting representation is largely programming
language agnostic. Thus, it facilitates the implementation of generic, reusable source code

7 https://en.wikipedia.org/wiki/Kotlin_(programming_language)

message VirtualMachine {

 option (resource_type_names) = "VirtualMachine";

 option (resource_type_names) = "Compute";

 option (resource_type_names) = "CloudResource";

 option (resource_type_names) = "Resource";

 google.protobuf.Timestamp creation_time = 2132;

 string id = 15888 [(buf.validate.field).required = true];

 bool internet_accessible_endpoint = 11229;

 map<string, string> labels = 12634;

 string name = 5434 [(buf.validate.field).required = true];

 // The raw field contains the raw information that is used to

fill in the fields of the ontology.

 string raw = 17236;

 ActivityLogging activity_logging = 17610;

 AutomaticUpdates automatic_updates = 7698;

 repeated string block_storage_ids = 14852;

 BootLogging boot_logging = 4303;

 EncryptionInUse encryption_in_use = 5839;

 GeoLocation geo_location = 17337;

 MalwareProtection malware_protection = 5352;

 repeated string network_interface_ids = 150;

OSLogging os_logging = 14872;

 repeated Redundancy redundancies = 11599;

 RemoteAttestation remote_attestation = 16051;

 optional string parent_id = 7061;

 ResourceLogging resource_logging = 17205;

 UsageStatistics usage_statistics = 4834;

 }

http://www.emerald-he.eu/
https://en.wikipedia.org/wiki/Kotlin_(programming_language)

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 39

www.emerald-he.eu

analysis techniques. Currently, Codyze supports the programming languages C, C++, Java, Go
and Python.

Within EMERALD, Codyze interacts with the Orchestrator to orchestrate its analysis, and reports
its findings as evidence to the Evidence Store (see Figure 6). Thereby, Codyze generates an
analysis report in SARIF8 (CodyzeSarif). This report contains raw evidence from Codyze’s analysis,
which is persisted to the Evidence Store to facilitate further analysis externally to Codyze.
Moreover, Codyze processes the findings in the SARIF report into evidence for the EMERALD
framework. Each finding is converted into a CodyzeEvidence that identifies the analysed Cloud
Service (cloudServiceId), specifies the analysed resource (resource), links it to the underlying
SARIF report (sarifId), classifies the finding according to the EMERALD ontology (ontologyRef)
and summarizes the result (result).

Details on the approach of the Codyze component and its related Task 2.2 will be reported in
dedicated deliverables D2.2 “Source Evidence Extractor–v1” (M12) and D2.3 “Source Evidence
Extractor–v2” (M24).

Figure 6. Codyze component overview

3.1.5 eknows

The eknows component – based on a platform for multi-language reverse engineering and
documentation generation – extracts evidence from source code files. The source code files are
collected from the Cloud Service environment at certain points in time. A set of predefined
triggers will be available (e.g., once a week/month/etc., or upon changes) to configure the points
in time according to the respective use case. eknows stores the collected files, as well as relevant
metadata related to the sources (e.g., from code repositories) and metrics.

eknows uses static code analysis to extract evidence. The Java-based software platform provides
a modular, extensible set of software components for (i) source code parsing using language-

8 Static Analysis Results Interchange Format (SARIF), https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-
v2.1.0.html

http://www.emerald-he.eu/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 39

www.emerald-he.eu

specific frontends (currently more than 16 programming languages, including Java and Python)
(extraction), (ii) transformation of parsed source code into a generic abstract syntax tree
(GASTM), (iii) structural and language-independent analysis of security-related information, and
(iv) reporting of analysis results for security metrics. The extracted and analysed raw evidence
is then forwarded to the Evidence Store component.

At the moment of writing, eknows comprises two main data classes (see Figure 7):
EknowsSourceCodeFile and EknowsEvidence.

EknowsSourceCodeFile serves as an internal representation of the source code file to be
analysed, identified by a unique identifier (id). It contains attributes denoting the repository
from where to collect the file (repositoryPath), the name of the file (filename), the corresponding
Cloud Service (cloudServiceId), the generated abstract syntax tree (AST) model for the parsed
source code (compilationUnit), and further metadata, such as the modificationDate.

EknowsEvidence is the internal representation of the extracted data of the source code file
(fileId). This is created for a security metric (metricId) during the extraction process. The
evidence result (result) is stored in the EknowsEvidence class, as well as closely related
attributes, such as lineOfCode or analyzerVersion. The internal data class of eknows will change
in the next few months, according to the requirements defined for the EmeraldUI in D4.1 [3]
and further needs of the pilot partners.

EknowsEvidence is related to the Orchestrator (Cloud Service) and the Evidence Store
(assessment results, raw evidence). EknowsSourceCodeFile is related to the Orchestrator (Cloud
Service). The information from eknows can be accessed via APIs (Java, REST and/or CLI
(Command Line Interface)) and used via the upcoming EmeraldUI.

Details on the approach of the eknows component and its related Task 2.2 will be reported in
dedicated deliverables D2.2 “Source Evidence Extractor–v1” (M12) and D2.3 “Source Evidence
Extractor–v2” (M24).

Figure 7. Overview of the eknows component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 39

www.emerald-he.eu

3.2 Trustworthiness System (TWS) Data Model

The TWS component securely stores the information and associated metadata of evidence and
assessment results on the Blockchain to be able to guarantee its integrity and transparency
through the EmeraldUI.

Due to the use of Blockchain, sensitive information such as evidence and assessment results are
not stored and just a summary of them is recorded on the Blockchain through identifiers and
hashes. In fact, in the case of assessment results, two different hashes are included: the
assessment result itself and the compliance comments. The evidence and assessment result
themselves are kept in a local storage - Evidence Store and Assessment components
respectively.

In addition, TWS also records metadata information to provide some context. In the case of
evidence, they are usually related to specific Cloud Services (cloudServiceId) and the cloud
resources to which they refer (resourceId). In the case of an Assessment Result, the requirement
to which it refers (requirementId), and the associated evidence identifiers considered in the
assessment (evidenceIds) are also stored. Finally, for both evidence and assessment results,
recording information about the timestamp when they were created (timestamp) is also useful.

As a result, Figure 8 summarises the current data model for evidence (TrustworthyEvidence) and
assessment results (TrustworthyAssessmentResult) to be recorded on the Blockchain-based
TWS. It also shows the interactions with other components: i) with the Assessment component,
which provides information to be recorded in the TWS, and from where the TWS retrieves the
actual evidence and assessment results to validate their integrity; ii) with the EmeraldUI, which
provides a graphical interface for users to automatically validate the integrity status of the
Evidence and Assessment Results.

Details on the approach of the TWS component and its related Task 3.5 have been reported in
D3.1 [4].

Figure 8. Overview of the Trustworthiness System component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 39

www.emerald-he.eu

3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data
Model

MARI – Mapping Assistant for Regulations with Intelligence - is the component that using Deep
Learning and state-of-the-art NLP tools is able to create an automatic association between:

• A security control and a security metric

• Two security controls from two different certification schemes.

MARI is based on the previous work in MEDINA's Metric Recommender9 [5], which took the
description of an EUCS security requirement in natural language, the description of a list of
metrics, again in natural language, and as a result returned the list of metrics in descending order
of relevance. To do this, the textual descriptions of the metrics and requirements are
transformed into feature vectors by pre-trained models (in particular, the best association
results in MEDINA were obtained with fastText10). A K-d tree is computed on the feature vectors
of the metrics, which can be used to select the k closest neighbours of the requirement vector,
based on the shortest Euclidean distance. Thus, we were able to obtain a metric-requirement
association.

At the time of writing, the development of MARI is focused on the internal architecture rather
than on interactions with other EMERALD components. Also, we are considering different
clustering techniques and different embedding production techniques. We will also extend the
MARI functionalities to deal with more certification schemes (in fact, the automatic association
between controls from different schemes is a novelty of EMERALD), and as per the work
description, we will develop different strategies to work with (e.g., take a subset of metrics that
are useful to get a certain level of certification).

Figure 9 shows a first approach of the MARI data model., based on the EUCS scheme [6]. The
RCM data classes SecurityMetric and SecurityRequirement are taken as input to produce two
new data classes, SecurityRequirementsAssociation and MetricRequirementAssociation. These
associations are the results of MARI processing. Please note that this data model is subject to
change in the coming releases due to the introduction of other certification schemes.

In addition, a refined internal data class, data storage, and calls to the component will be
reviewed over the coming months, both based on requirements from other components that
MARI interacts with, and as the component evolves. Details on the approach of MARI
component and its related Task 3.3 have been reported in D3.1 [4].

9 https://git.code.tecnalia.com/medina/public/nl2cnl-translator
10 https://fasttext.cc/

http://www.emerald-he.eu/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator
https://fasttext.cc/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 39

www.emerald-he.eu

Figure 9. Overview of the MARI component data model

3.4 Repository of Controls and Metrics (RCM) Data Model

The Repository of Controls and Metrics (RCM) provides a central point in EMERALD framework
where the certification schemes are stored and managed. The repository can contain different
schemes and includes a complete information of each scheme, with the corresponding
categorization.

A first approach of the RCM internal data model is based on the EUCS scheme [6] (see Figure
10)11, while it is subject to change in the coming releases due to the introduction of other
schemes (e.g., BSI C512or AIC413 are some foreseen ones). Because of this, the principal data
classes implemented in the RCM are SecurityControlFramework, SecurityCategory,
SecurityControl and SecurityRequirement, that reflect the organization of the EUCS framework.
Along with these, some other auxiliary entities are implemented, such as SimilarControls – to
support mapping among controls of different schemes - and ImplementationGuidelines – to help
the user with the implementation of the requirements. RCM also incorporates the definition of
the SecurityMetric class used in EMERALD to define what to measure to assess the collected
evidence.

 The RCM classes have interactions with other EMERALD components as follows:

11 Please note that an enlarged view of the RCM data model is available in APPENDIX: Release 1.0.9 of
Architecture and Data Modelling.
12https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatal
ogue/2020/C5_2020.pdf?__blob=publicationFile&v=3
13https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-
Compliance-Criteria-Catalogue_AIC4.html

http://www.emerald-he.eu/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.html

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 39

www.emerald-he.eu

• SecurityControlFramework, SecurityControl, SecurityMetric and SecurityRequirement
are related with the Orchestrator, which needs also to internally manage the schemes.

• SecurityMetric is also related with the AMOE and the Assessment components.

• SecurityMetric and SecurityRequirement are also shared with the MARI component.

Another functionality offered by the RCM is a Questionnaire to provide users the possibility to
perform a self-assessment to check compliance with the EUCS scheme. The Questionnaire-
related data classes, which are enclosed in a box in the diagram (see Figure 10), are as follows:
Questionnaire, QuestionnairePurpose, QuestionnaireLevel, Question, QuestionnaireAnswer,
QuestionnaireNonConformities, and jhiUser. All these entities are devoted to (i) Implement
several questions per requirement, (ii) manage the responses given; (iii) calculate the results for
this specific user, and (iv) offer the degree of compliance with the EUCS scheme regarding the
selected assurance level.

Finally, the EmeraldUI component is also related with the data entities used in the RCM in order
to provide the final user with a graphical view of the schemes contained in the RCM and all the
associated information.

Details on the approach of the RCM component and its related Task 3.2 have been reported in
D3.1 [4].

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 39

www.emerald-he.eu

Figure 10. Overview of the RCM component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 39

www.emerald-he.eu

3.5 Orchestrator Data Model

The Orchestrator is the central management and orchestration component in EMERALD. Its
main purpose is to hold all dynamic information about the current audit process, such as the
Target Of Evaluations, the evaluated Cloud Services, all Assessment Results, and the final
Certificate state (see Figure 11). Furthermore, it fetches static data from the RCM, such as the
available schemes and its associated metrics. For performance reasons this data
(SecurityControlFramework, SecurityControlCategory, SecurityControl, SecurityRequirement and
SecurityMetric) is cached in the Orchestrator. The most important dynamic data classes are:

• CloudService, which holds the logical representation of a single service, which aims to
be certified.

• TargetOfEvaluation, which takes an existing cloud_service_id and combines it with one
dedicated security catalogue to produce a Certificate.

• Certificate, which is the data class representing different states and is related to the
EvaluationResults.

• Control, which is the neutral representation of either a control, requirement or objective
(this definition of Control is similar to the term defined in OSCAL14). Since every
SecurityControlFramework/security scheme uses different names, the Orchestrator
normalizes them in the Control data class. In addition, each Control can have sub-
controls, which allows to include different SecurityControlFrameworks in EMERALD.

Details on the approach of the Orchestrator component and its related Task 3.1 have been
reported in D3.1 [4].

14 https://pages.nist.gov/OSCAL/resources/concepts/terminology/#control

http://www.emerald-he.eu/
https://pages.nist.gov/OSCAL/resources/concepts/terminology/#control

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 39

www.emerald-he.eu

Figure 11. Overview of the Orchestrator component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 39

www.emerald-he.eu

3.6 Evidence Store Data Model

The Evidence Store is the central component to store evidence from the evidence collector
components, which send the generated evidence directly to the Evidence Store. The main data
class is Evidence, which holds the necessary information regarding the collected evidence (see
Figure 12) and whose important fields are the following:

• A unique identifier (id) for each evidence. It needs to be a UUID

• timestamp describing when the evidence was created

• cloud_service_id of the Cloud Service the evidence belongs to

• tool_id is the ID of the evidence collector tool that created the evidence (such as Codyze,
eknows, Clouditor-Discovery, …)

• resource contains the resource properties of the discovered resource. It is described
according to the terms of the EMERALD Graph Ontology (see D2.1 [2] for an initial
version).

Evidence is sent to the Assessment component and can be retrieved via the Orchestrator API.

Details on the approach of the Evidence Store component and its related Task 3.1 have been
reported in D3.1 [4].

Figure 12. Overview of the Evidence Store component data model

3.7 Assessment Data Model

The Assessment component assesses the evidence stored in the Evidence Store by using the
metric definitions from the RCM. The needed metrics are called from the Orchestrator and the
evidence are sent directly from the Evidence Store to the Assessment. The important data
classes are the following:

• Metric contains the metadata and a link to the corresponding MetricImplementation

• MetricImplementation contains the implementation used by the assessment with the
specific code and the code language

• MetricConfiguration contains the target value and the operator used in the assessment
and can be specified separately for each Cloud Service

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 39

www.emerald-he.eu

• AssessmentResult contains the result of the assessment, including the used evidence_id,
metric_id and metric_configuration.

The AssessmentResults are sent to the Trustworthiness System and can be retrieved via the API
endpoints of the Orchestrator. Figure 13 depicts the diagram for the Assessment data model.

Details on the approach of the Assesment component and its related Task 3.4 have been
reported in D3.1 [4].

Figure 13. Overview of the Assessment component data model

3.8 Evaluation Data Model

The main purpose of the Evaluation component is to map the measurements of individual
metrics (i.e., AssessmentResults) and combine them according to the mapping of a metric to a
Control. This is defined as an EvaluationResult (see Figure 14), the most important fields of which
are:

• Its id, which is a UUID to make it unique

• The combination of the Cloud Service (through its cloud_service_id) and a control
(through its control_id and associated catalog_id identifiers)

• A timestamp

• A status, which can either be compliant, not compliant or waiting for more data

• Optionally, a second valid_until field, which describes the validity of this result. This is
mainly used for evaluation results that are created manually (e.g., for controls which
cannot be measures automatically).

Usually, one or more metrics define the compliance state of a control. Currently, all of the
assessment results need to be compliant for the evaluation result to be compliant. This might
change in the future if more sophisticated logical operations are needed. For example, it could

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 39

www.emerald-he.eu

be possible that either one or another metric is sufficient to demonstrate compliance to the
control.

Details on the approach of the Evaluation component and its related Task 3.4 have been
reported in D3.1 [4].

Figure 14. Overview of the Evaluation component data model

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 39

www.emerald-he.eu

4 Interactive Documentation

This section describes the web-based documentation approach used to share the data model
within the EMERALD project. The main technologies used are PlantUML15, Nginx16 web service
and Gitlab17. The main objective is to have a centralized documentation that can be viewed from
any device, without the need to install any tools.

4.1 PlantUML

To allow for easy text-based creation of the data model, the PlantUML tool was chosen. This
tool supports a wide range of diagrams – some of which have included in our documentation
e.g., class diagrams, sequence diagrams, component diagrams. As the diagrams are based on
structured text, very similar to common programming languages, the implementation is straight
forward and can therefore be easily adapted into code or vice versa.

PlantUML allows to render the diagrams in different output formats. The most commonly used
in the project are PNG and SVG. The latter is important for the web-service – the option
‘!pragma svginteractive true’ switches the diagrams from static boxes to dynamically
highlighted on hover or click. As it might be hard to track connected classes in a huge class
diagram, a class can be clicked or hovered and all related classes are highlighted as well.

Figure 15. Interactive SVG - highlight neighbours on click

Figure 15 depicts an example: the Evaluation component was clicked, and the direct neighbour
Orchestrator is highlighted, whereas the other links and components are faded.

Furthermore, PlantUML allows to set variables and themes to use the EMERALD colour scheme
on all diagrams. This is convenient as the colour scheme can be imported for each diagram and
does not need to be set manually for each element. The different diagram files can be included
in other files, which reduces redundant information, and the main classes of each
subcomponent need to be defined in a single file. The names of the components are set as
variables including links to the overview diagrams – so no manual linking is required.

4.2 Web Service

To make the diagrams more accessible, a simple html page was created that includes some basic
JavaScript functionalities to switch the diagrams displayed. The landing page
(https://models.emerald.digital.tecnalia.dev/) shows an overview of the components (see
Figure 16). Users can click component titles to switch to the respective overview diagram.
Furthermore, a navigation bar at the top of the page allows quick access to the component
overview (“Components” menu option) or the data diagram page (“Data diagram” menu

15 https://plantuml.com/
16 https://nginx.org/en/
17 https://en.wikipedia.org/wiki/GitLab

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/
https://plantuml.com/
https://nginx.org/en/
https://en.wikipedia.org/wiki/GitLab

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 39

www.emerald-he.eu

option). The idea is to start with a generic overview and then drill down to see the details of a
component. Although the data diagram is quite large, you can focus on a single component by
clicking on it.

Figure 16. Landing page of the interactive documentation

4.2.1 Implementation details

Once the diagrams are rendered, the interactive documentation can be deployed locally without
any need of a web service by simply opening the index.html file. However, for ease of access -
and to always have access to the newest release - we are using Dockerfiles18 to generate a nginx
based image that can be deployed on the EMERALD Kubernetes cluster.

The structure of the web service is as follows:

./index.html

./imgs/logo.svg

./out/*_data.svg

./out/*_component.svg

./out/*_Sequence_Diagram.svg

The index.html file contains the basic structure and scripts to load the diagrams. The EMERALD
logo is stored in /imgs. The rendered diagrams are stored in /out and are loaded on demand.
This implementation is portable to any device that supports a modern web browser by simply
copying the files. In the Nginx web service, the files are located in /usr/share/nginx/html.

4.3 Data model versioning

As the PlantUML based diagrams contain text/code, the files can be used in versioning systems
such as git19. This allows for different organisational processes, that are not possible in common
online tools with graphical support (e.g., draw.io20 – although it allows versioning, there are no
processes to keep different versions of the diagrams and proposed changes, as it is possible

18 https://docs.docker.com/reference/dockerfile/
19 https://git-scm.com/
20 https://www.draw.io

http://www.emerald-he.eu/
https://docs.docker.com/reference/dockerfile/
https://git-scm.com/
https://www.draw.io/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 39

www.emerald-he.eu

using text-based diagrams and git + GitLab21). Different versions of the diagrams can be stored
in commits, and merge requests can be created to deal with changes to the diagrams.

The process to add changes to the data model was defined as follows: major changes are
completed in a separate branch – when finished, a merge request should be created in the
EMERALD GitLab and the changes will be reviewed to check for inconsistencies and breaks to
the interactive, web-service-based deployment. After the review, the new version will be
merged, which triggers the build pipeline and a new release will be deployed to the EMERALD
Kubernetes cluster. The latest release version of the diagrams will then be available to all
developers and can be retrieved at https://models.emerald.digital.tecnalia.dev/. If there are any
problems, or additional diagrams are needed, Gitlab’s issue functionality can be used to
document, communicate and coordinate the required changes.

21 https://gitlab.com/

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/
https://gitlab.com/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 39

www.emerald-he.eu

5 Data Exchange and Formats

This section provides a short overview of the planned data exchange approach, as well as the
formats used. Although all EMERALD components use different data types, they all
communicate in a standardized way and format, which speeds up development, as components
do not need to build special data connectors for different tools.

5.1 Interaction mechanisms between components

The interaction between the components will be implemented using REST22 – representational
state transfer. Each component is using and/or serving REST-APIs that are documented in the
OpenAPI23 specification files. This helps developers to share the different endpoints and allows
for code for client interfaces to be generated. Some components may also offer gRPC
connections (Remote Procedure Call framework by Google) to share data between closely
related components such as Evidence Store and Assessment.

The most common format for REST-API will be JSON24, as it allows for easy access of attribute-
value pairs and arrays. In EMERALD, some components are based on the predecessor versions
developed in MEDINA and have existing APIs following the same approach. These APIs can be
extended and adjusted to the needs of the EMERALD framework.

Listing 2 shows the JSON for a piece of evidence that is sent from AMOE to the Evidence Store.
Similarly, Listing 3 shows a more extensive example for data represented in JSON and how it is
used by some EMERALD components, such as Clouditor-Discovery.

22 https://en.wikipedia.org/wiki/REST
23 https://en.wikipedia.org/wiki/OpenAPI_Specification
24 https://en.wikipedia.org/wiki/JSON

{

 "id":"b11a1b4b-4cff-4135-afbb-f6e30364d881",

 "timestamp":"2024-06-26T18:23:45.123456",

 "cloud_service_id":"3f1c2e4c-8bd5-45d1-a6a3-0f9a9a8e4d35",

 "tool_id":"amoe",

 "raw":"password must contain more than 15 characters",

 "resource": {"id":"165483","type":["PolicyDocument"]}

}

Listing 2. AMOE evidence in JSON

http://www.emerald-he.eu/
https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://en.wikipedia.org/wiki/JSON

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 39

www.emerald-he.eu

Some components will offer data import / export functionality. The Repository of Controls and
Metrics is planning to allow import of security schemes using the OSCAL25 format. The API
description and more details on the format will be described in the future deliverable D3.3
“Evidence assessment and Certification–Implementation-v1” (M12). The OSCAL format allows
different file types and data formats such as YAML26 and JSON. Listing 4 shows a tentative
example of the mapping of an EUCS Requirement in OSCAL. It can be seen how the parts of the
Control (ops-02) are specified using the OSCAL elements ”id”, “title”, ”properties”, and also with

25 https://pages.nist.gov/OSCAL/
26 https://en.wikipedia.org/wiki/YAML

{

 "id":

"/subscriptions/XXXXX/resourcegroups/democlouditorhappy/providers/microsoft

.storage/storageaccounts/democlouditordiagnostics",

 "cloudServiceId": "00000000-0000-0000-0000-000000000000",

 "toolId": "Clouditor Evidences Collection",

 "properties": {

 "@type":

"type.googleapis.com/clouditor.ontology.v1.ObjectStorageService",

 "creationTime": "2023-07-09T10:35:18.246911100Z",

 "id":

"/subscriptions/XXXXX/resourcegroups/democlouditorhappy/providers/microsoft

.storage/storageaccounts/democlouditordiagnostics",

 "labels": {

 "owner": "clouditor"

 },

 "name": "democlouditordiagnostics",

 "raw": "/*...*/",

 "geoLocation": {

 "region": "westeurope"

 },

 "httpEndpoint": {

 "url":

"https://democlouditordiagnostics.[file,blob].core.windows.net/",

 "transportEncryption": {

 "enabled": true,

 "enforced": true,

 "protocol": "TLS",

 "protocolVersion": 1.2,

 "cipherSuites": []

 }

 },

 "parentId":

"/subscriptions/XXXXX/resourcegroups/democlouditorhappy"

 }

}

Listing 3. Clouditor example evidence in JSON

http://www.emerald-he.eu/
https://pages.nist.gov/OSCAL/
https://en.wikipedia.org/wiki/YAML

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 39

www.emerald-he.eu

”parts” and ”prose”; the Requirements are implemented with “parts” within the upper “parts”
of Control. The Requirement ID (OPS-02.3) is specified with “properties”, and the requirement
itself with “prose”.

5.2 Sequence diagrams

To illustrate the interactions between the components, sequence diagrams will be created and
extended in the future work of Task 1.1. Additional documentation will be provided which can
be included in the interactive PlantUML diagrams. At the time of writing this deliverable, the

"controls": [

 {

 "id": "ops-02",

 "title": "CAPACITY MANAGEMENT - MONITORING",

 "properties": [

 {

 "name": "label",

 "value": "OPS-02"

 }

],

 "parts": [

 {

 "id": "ops_02_obj",

 "name": "control-objective",

 "prose": "The capacities of critical resources such as

personnel and IT resources are monitored."

 },

 {

 "id": "ops-02_smt",

 "name": "statement",

 "parts": [

 {

 "id": "ops-02_smt.3",

 "name": "item",

 "properties": [

 {

 "name": "label",

 "value": "OPS-02.3"

 }

],

 "prose": "The provisioning and de-provisioning of

cloud services shall be automatically monitored to guarantee fulfilment of

OPS-02.1"

 }

]

 }

]

 }

]

Listing 4. A EUCS Requirement mapping in OSCAL

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 39

www.emerald-he.eu

sequence diagrams for AMOE and eknows have already been integrated into the diagram
collection. The sequence diagrams will be included in future deliverables of EMERALD WP1, in
particular in D1.3 “EMERALD solution architecture-v1” (M12) and D1.4 “EMERALD solution
architecture-v2” (M24).

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 39

www.emerald-he.eu

6 Conclusions

This document provides an overview of the overall EMERALD data model, as well as a more
detailed view of the component data models. The general data model is loosely based on the
data model of the predecessor project MEDINA. However, to increase the TRL of the reused
MEDINA components and adjust them to the EMERALD framework, all component diagrams
received updates. Furthermore, it was extended with additional components, such as AI-SEC or
eknows.

The data model is presented in a web service, to allow interactive investigation of the different
diagrams. The diagrams are based on text instructions using PlantUML and then rendered in SVG
files. This allows the diagrams to be versioned and the various functionalities of the EMERALD
GitLab repository can be used to manage and coordinate the updates. The basic idea of this
interactive documentation is to start with an abstract overview (landing page) and then drill
down to the different components of interest. The different classes and components of the
diagrams can be clicked/hovered to navigate and highlight direct connections.

Finally, this deliverable describes the main data format that will be used for data exchange
between EMERALD components and external sources – JSON. To provide more insight, an
example for AMOE and Clouditor-Discovery evidence have been provided. The Repository of
Controls and Metrics (RCM) will provide import/export functionality of security schemes in
OSCAL format – for which a JSON example was also provided.

The data diagrams will be updated according to the needs and changes of the different
components. These changes will be subject to the described processes in this deliverable, shared
with the consortium in different version releases, and deployed in the EMERALD Kubernetes
infrastructure. The updates will be collected and described in a second version of this deliverable
(D1.2 – Data modelling and interaction mechanisms v2), planned to be submitted in M18 of the
project (end of April 2025).

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 39

www.emerald-he.eu

7 References

[1] EMERALD Consortium, “EMERALD - Annex 1 - Description of Action - GA 101120688,” 2022.

[2] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage,” 2024.

[3] EMERALD Consortium, “D4.1 Results of the UI-UX requirements analysis and the work
processes–v1,” 2024.

[4] EMERALD Consortium, “D3.1 Evidence assessment and Certification–Concepts-v1,” 2024.

[5] MEDINA Consortium, “D5.5 MEDINA integrated solution-v3,” 2023. [Online]. Available:
https://medina-project.eu/wp-content/uploads/2023/09/MEDINA_D5.5_MEDINA-
integrated-solution-v3_v1.0.pdf. [Accessed July 2024].

[6] ENISA, “EUCS - Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed July
2024].

http://www.emerald-he.eu/

DRAFT
D1.1 – Data Modelling and interaction mechanisms – v1 Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 39

www.emerald-he.eu

APPENDIX: Release 1.0.9 of Architecture and Data Modelling

In order to allow the readers of this document to consult the documentation and data model
themselves, the current version of the files have been archived in a zip file. The contents are
images of the different data models, as well as a webpage to aid in navigation. The 1.0.9 release

version of the interactive documentation is available here: D1.1 Appendix Release 1.0.9 of
Architecture and Data Modelling

To open the interactive documentation locally, you need to extract the zip file. Then navigate to
the “architecture_and_data_model” folder and open the index.html file in a common web
browser.

http://www.emerald-he.eu/
https://at.cloud.fabasoft.com/folio/public/1vo5ymfjgktaw1aenio2rx531v
https://at.cloud.fabasoft.com/folio/public/1vo5ymfjgktaw1aenio2rx531v

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Data Model Overview
	3 Component Data Models
	3.1 Evidence Collector Data Models
	3.1.1 AI-SEC
	3.1.2 AMOE
	3.1.3 Clouditor-Discovery
	3.1.4 Codyze
	3.1.5 eknows

	3.2 Trustworthiness System (TWS) Data Model
	3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data Model
	3.4 Repository of Controls and Metrics (RCM) Data Model
	3.5 Orchestrator Data Model
	3.6 Evidence Store Data Model
	3.7 Assessment Data Model
	3.8 Evaluation Data Model

	4 Interactive Documentation
	4.1 PlantUML
	4.2 Web Service
	4.2.1 Implementation details

	4.3 Data model versioning

	5 Data Exchange and Formats
	5.1 Interaction mechanisms between components
	5.2 Sequence diagrams

	6 Conclusions
	7 References
	APPENDIX: Release 1.0.9 of Architecture and Data Modelling

