
DRAFT
Deliverable D2.2

Source Evidence Extractor – v1

Editor(s): Verena Geist, Stefan Schöberl

Responsible Partner: Software Competence Center Hagenberg GmbH (SCCH)

Status-Version: Final – v1.0

Date: 31.10.2024

Type: OTHER

Distribution level: PU

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 30

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D2.2 – Source Evidence Extractor – v1

Due Date of Delivery to the EC 31.10.2024

Workpackage responsible for the
Deliverable:

WP2 – Methodology for knowledge extraction

Editor(s): Verena Geist, Stefan Schöberl (SCCH)

Contributor(s): Florian Wendland (FHG)

Reviewer(s):
Ramon Martin De Pozuelo Genis (CXB)
Juncal Alonso (TECNALIA)
Cristina Martinez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, and WP5

Abstract: This deliverable presents tools and techniques for
evidence extraction from source code that can be
integrated with the certification graph.
It is the result of work performed in Task 2.2. This
document is a first/interim version, the final version on
source evidence extractors will be reported in D2.3.

Keyword List: Knowledge extraction, source code files, technical
evidence, static code analysis, Codyze, eknows.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 30

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 14.08.2024 First draft version, ToC Verena Geist, Stefan
Schöberl (SCCH),
Florian Wendland
(FHG)

v0.2 22.08.2024 Executive summary Verena Geist (SCCH)

v0.3 26.08.2024 References, introduction, embedding
into the EMERALD architecture,
acronyms

Verena Geist (SCCH)

v0.4 04.09.2024 Functional description of eknows Verena Geist (SCCH)

v0.5 25.09.2024 Descriptions of Codyze Florian Wendland
(FHG)

v0.6 01.10.2024 Technical description of eknows Stefan Schöberl (SCCH)

v0.7 07.10.2024 Conclusion, finalizing the document
for the internal review

Verena Geist (SCCH)

v0.8 17.10.2024 Internal review Ramon Martin De
Pozuelo Genis (CXB)

v0.9 18.10.2024 Revision of internal review Verena Geist, Stefan
Schöberl (SCCH)

v0.10 28.10.2024 Final reviewed version Juncal Alonso, Cristina
Martinez (TECNALIA)

v1.0 31.10.2024 Submitted to the European
Commission

Juncal Alonso, Cristina
Martínez (TECNALIA)

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 30

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable .. 9

1.2 Document structure ... 10

2 Source evidence extractors in the EMERALD architecture ... 11

3 Codyze for EMERALD ... 12

3.1 Functional description ... 12

3.2 Technical description ... 13

3.2.1 Prototype architecture .. 13

3.2.2 Technical specifications ... 15

3.3 Delivery and usage ... 16

3.3.1 Package information .. 16

3.3.2 Installation ... 16

3.3.3 Instructions for use .. 16

3.3.4 Licensing information .. 17

3.3.5 Download .. 17

3.4 Limitations and future work .. 17

4 eknows evidence extractor .. 18

4.1 Functional description ... 18

4.2 Technical description ... 22

4.2.1 Prototype architecture .. 22

4.2.2 Technical specifications ... 23

4.3 Delivery and usage ... 24

4.3.1 Package information .. 24

4.3.2 Installation .. 24

4.3.3 Instructions for use .. 25

4.3.4 Licensing information .. 25

4.3.5 Download .. 25

4.4 Limitations and future work .. 25

5 Conclusions .. 27

6 References ... 28

Appendix A: eknows Binary Usage Software License .. 30

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 30

www.emerald-he.eu

 List of tables

TABLE 1. REQUIREMENT CODYZE.01 - EXTRACTION OF SECURITY FEATURES FROM SOURCE CODE 13
TABLE 2. SUPPORTED PROGRAMMING LANGUAGES BY CODYZE THROUGH THE CPG LIBRARY 15
TABLE 3. OVERVIEW OF CODYZE PACKAGE STRUCTURE ... 16
TABLE 4. EKNOWS.01 - INTEGRATION INTO EXISTING SYSTEMS ... 19
TABLE 5. EKNOWS.02 - RESILIENCE WHILE ANALYSING ERRONEOUS CODE ... 19
TABLE 6. EKNOWS.03 - MULTI-LANGUAGE SUPPORT... 20
TABLE 7. EKNOWS.04 - SUPPORT EMERALD EVIDENCE FORMAT ... 20
TABLE 8. EKNOWS.05 - STATIC CODE ANALYSIS .. 21
TABLE 9. SUPPORTED PROGRAMMING LANGUAGES BY EKNOWS... 23
TABLE 10. OVERVIEW AND DESCRIPTION OF PACKAGE STRUCTURE FOR THE EKNOWS EVIDENCE EXTRACTOR 24

List of figures

FIGURE 1. EMERALD COMPONENT OVERVIEW DIAGRAM [9]. THE RED RECTANGLE HIGHLIGHTS THE SOURCE

EVIDENCE EXTRACTION COMPONENTS, WHICH ARE DESCRIBED IN THIS DELIVERABLE. 11
FIGURE 2. ARCHITECTURE OF CODYZE FOR EMERALD HIGHLIGHTING ITS MODULES AND CONTRIBUTIONS WITHIN

THE EMERALD PROJECT (I.E., MODULES WITH DASHED BOXES ARE EXTERNAL) 14
FIGURE 3. CONFIGURATION OF EVIDENCE COLLECTORS IN THE EMERALD UI (D4.3 [14]) 17
FIGURE 4. REVERSE ENGINEERING ACTIVITIES SUPPORTED BY THE SOFTWARE PLATFORM EKNOWS [15]. FURTHER

EXPLANATIONS OF SUBCOMPONENTS ARE PROVIDED IN SECTION 4.2.1.1. ... 18
FIGURE 5. OVERVIEW OF EKNOWS PLATFORM BUILDING BLOCKS [16] .. 22

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 30

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

AMOE Assessment and Management of Organisational Evidence

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

ASTM Abstract Syntax Tree Metamodel

BSI C5 BSI Cloud Computing Compliance Criteria Catalogue

CertGraph Certification Graph

CaaS Container-as-a-Service

CDT C/C++ Development Tooling

CI/CD Continuous Integration / Continuous Deployment

CIL Common Intermediate Language

CLI Command-Line Interface

COBOL Common Business-Oriented Language

CoCo/R Compiler Generator

Codyze Static Code Analyzer from FHG

CPG Code Property Graph

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

DoA Description of Action

DOT Markup-Language

DSL Domain-Specific Language

DSM Domain-Specific Model

EC European Commission

eknows The platform for software analysis from SCCH

eknows core Selected modules of the eknows platform, which form the basis for the
eknows evidence extractor

eknows evidence
extractor

The extractor component developed in the context of EMERALD

ENISA European Union Agency for Cybersecurity

EUCS EU Cloud Certification Scheme

GA Grant Agreement to the project

GASTM Generic AST Metamodel

HTML Hypertext Markup Language

JAR Java Archive

JCL Job Control Language

JDT Java Development Tools

JNA Java Native Access

JSON JavaScript Object Notation

Koopa (COBOL) Parser Generator

KPI Key Performance Indicator

KR Key Result

MD Markdown

MEDINA Predecessor project of EMERALD

ODF Open Document Format

OMG Object Management Group

PL/I Programming Language One

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 30

www.emerald-he.eu

PL/SQL Procedural Language/Structured Query Language

PT Parse Tree

REST Representational State Transfer

SARIF Static Analysis Results Interchange Format

SASTM Specialized AST Metamodel

SE Standard Edition

SVG Scalable Vector Graphics

SW Software

TLS Transport Layer Security

TRL Technology Readiness Level

WP Work Package

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 30

www.emerald-he.eu

Executive Summary

This deliverable presents the initial design, architecture, and implementation state of the source
evidence extractors of WP2, i.e., Codyze and eknows evidence extractor. They contribute to the
key result KR1-EXTRACT of EMERALD, a framework to continuously extract knowledge from
different layers of a cloud service and prepare suitable evidence based on them.

EMERALD follows a knowledge graph-based approach to provide a unified view of the cloud
service under certification at different layers of the service, ranging from the infrastructure layer
(e.g., virtual resources), to the business layer (e.g., policies and procedures), to the
implementation layer (e.g., source code files) and data layer (e.g., increasingly used AI models)
in cloud applications. The source evidence extractors, developed in Task 2.2 and described in
this deliverable, aim at identifying critical security-related functionality such as data encryption,
transport encryption, or authentication in source code. Other related deliverables in WP2, all
due at project month 12 (October 2024), provide functional and technical details on further
evidence extractors from different sources, i.e., D2.4 [1] on evidence extraction from policy
documents in Task 2.3, D2.6 [2] on security and privacy preserving evidence extraction in Task
2.4, and D2.8 [3] on runtime data extraction in Task 2.5. All these details contributed to D2.1 [4]
on the overall information model of the certification graph in Task 2.1.

This document starts by illustrating how the source evidence extractors fit into the overall
EMERALD architecture. The main part provides functional and technical descriptions of the two
extractor components Codyze and eknows evidence extractor, including their purpose and
scope, the (current and planned) coverage of the EMERALD requirements, the components’
internal architecture and their subcomponents. These descriptions are complemented by
information on delivery and usage, as well as on limitations and future work. Finally, the
document concludes with a short summary.

The source evidence extractors described in this deliverable contribute to KR1-EXTRACT by
providing next-generation evidence gathering tools and techniques based on a knowledge graph
approach. The presented extractors currently have the initial prototypes implemented and
ready to be (to some degree) integrated with other components of the EMERALD architecture.
Some requirements of the components are already fully or partially satisfied by the presented
prototypes.

Based on the work described in this deliverable, the source evidence extractors will be further
extended and integrated into the EMERALD framework. This is the first iteration of the
deliverable coming from Task 2.2. The second and final version of this deliverable with the
updated extractors will be delivered with D2.3 [5] in project month 24 (October 2025). Evidence
will be prepared according to the integrated, graph-based model of semantically linked and
combined evidence, provided in D2.10 (interim version) [6] in project month 15 (January 2025)
and D2.11 (final version) [7] in project month 27 (January 2026). The extracted evidence will be
stored and assessed, i.e., to verify the implementation of security metrics, in the scope of WP3.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 30

www.emerald-he.eu

1 Introduction

EMERALD aims to provide a next generation set of evidence gathering tools and techniques
based on a knowledge graph approach. KR1-EXTRACT supports an improved and unified tool-
supported approach to continuously extract knowledge from different layers of a cloud service,
e.g., infrastructure, platform, runtime information, policy documents, software, and AI models.

The objective of WP2 is to establish a unified view of the cloud service under certification by
extracting and enriching knowledge of the different layers of the service and providing suitable
evidence for security metrics. A major part of this work package is research and design of
multiple tools and techniques to extract knowledge out of various sources. A graph-based
model, called the certification graph (CertGraph), serves as a common structure that is filled by
all evidence extraction tools.

1.1 About this deliverable

The goal of this deliverable is to present the design and implementation of the EMERALD
evidence extractors, that extract knowledge from source code. This is a report on the initial
prototypes reflecting an early stage of implementation and integration of these extractors and
is the first of two iterations of deliverables, resulting from Task 2.2.

Evidence on the source code level is primarily gathered by the source evidence extractors Codyze
and eknows evidence extractor, which are adapted to support the CertGraph data model.
Codyze, originally launched in MEDINA1, focuses on generating evidence for security-related
findings, such as the existence of encryption or proper authentication. In EMERALD, it should be
advanced to TRL 7 and improved to verify that functionality is implemented according to state-
of-the art security guidelines and standards. To supplement evidence extraction from source
code, the software analysis platform eknows is integrated as basis for the eknows evidence
extractor. eknows offers language-independent analyses and could be extended to identify
security-enforcing business rules in code and verify correct usage of security-related APIs. A
compact overview of both source code extractors in the form of Components Cards can be found
in D1.3 [8].

Furthermore, information from project configurations and deployment files such as
infrastructure-as-code might be used to further augment the CertGraph data model. For now,
please note that these are ideas of what technical evidence could be gathered from source code.
The next deliverable, D2.3 [5], will describe how evidence extraction was implemented in detail
according to the agreed security scheme(s). Also note that the integration of Codyze and eknows
is not planned. The EMERALD framework works with two different source evidence extractors,
i.e., a security metric may work well with Codyze, and another using the eknows evidence
extractor. However, the resulting evidence format must be the same. This shows the use of APIs
in the framework and emphasises that the framework is not tied to a specific tool.

All extracted information together provides a system-level view of the cloud service identifying
exposed functionality and interactions with other cloud services. Along these interfaces
additional evidence can be gathered specifically for security requirements on service
interactions such as transport encryption or authentication. The functionalities are then
classified, annotated, and linked with other extracted evidence information from different layers
of the cloud service (i.e., infrastructure, policy documents, and artificial intelligence (AI) models)
in the EMERALD CertGraph [6] [7].

1 https://medina-project.eu/

http://www.emerald-he.eu/
https://medina-project.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 30

www.emerald-he.eu

1.2 Document structure

The document is structured as follows.

In Section 2, we discuss how the source evidence extractors fit into the overall EMERALD
architecture and how they relate to other components.

The main Sections 3 and 4 report on the design and implementation of Codyze and the eknows
evidence extractor. For each source extractor, functional and technical descriptions are
provided, including their purpose and scope, the (current and planned) coverage of the
EMERALD requirements, the components’ internal architecture, their subcomponents, and
details about the programming language, libraries, etc. used. These descriptions are
complemented by information on delivery and usage, including package information,
installation instructions, user manual, licensing and download information, as well as limitations
and future work.

Section 5 ends up with the conclusion of this deliverable.

The document includes an appendix, Appendix A: eknows Binary Usage Software License, that
contains the license for the supplied binaries (eknows core, selected parts of the closed source
eknows platform) which are required by the eknows evidence extractor.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 30

www.emerald-he.eu

2 Source evidence extractors in the EMERALD architecture

This section describes how the source evidence extractors interact with (selected) EMERALD
components on a conceptual level. Figure 1 shows the EMERALD high-level architecture as a
component diagram [9]. In EMERALD, a component is defined as “any part of the EMERALD
ecosystem that has a specific functionality and can be considered a separate entity with respect
to other components” [10]. In contrast, a tool is a “software element that has several disparate
functions and therefore can be composed by several components” [10]. Therefore, Codyze and
eknows are referred to as components rather than tools in the context of EMERALD.

The components for collecting evidence about technical and organisational measures, i.e.,
AMOE, eknows, AI-SEC, Clouditor-Discovery, and Codyze, are represented at the bottom part of
Figure 1. The source evidence extractor components Codyze (see Section 3) and eknows
evidence extractor (see Section 4), which obtain technical evidence from the analysis of the
source code of cloud applications, are highlighted using a thick frame. AMOE [1], the component
for organisational evidence gathering from MEDINA, analyses various documents and policies of
the cloud service provider (CSP) and produces evidence about the CSP's compliance to
organisational requirements of the certification framework. Clouditor-Discovery [3], also
originated from MEDINA, collects evidence about the secure configuration of cloud resources,
with a focus on runtime data extraction in EMERALD. AI-SEC [2] is a newly developed component
in EMERALD and analyses AI models for several key evidence regarding robustness against
adversarial attacks, explainability, and fairness.

In MEDINA, some extraction components implemented their own assessment, which causes
more maintenance effort if requirements change over time. Thus, centralizing assessment is one
of the goals in EMERALD. This is done by delivering exclusively (or as far as possible) raw
evidence to the Evidence Store [8]. All WP2 extraction components, which extract knowledge
from the various layers of a cloud service (i.e., policy documents, source code, cloud interfaces,
AI models, etc.), provide (part of) evidence (e.g., for transport encryption), which is then mapped
to the EMERALD evidence format using the terms described in the CertGraph Ontology [4]. This
evidence information is stored in the Evidence Store following the defined schema and is used
to assess the metrics defined in the Repository of Controls and Metrics [11].

Figure 1. EMERALD component overview diagram [9]. The red rectangle highlights the source evidence
extraction components, which are described in this deliverable.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 30

www.emerald-he.eu

3 Codyze for EMERALD

Codyze2 is a static code analyser with a focus on verifying compliance in source code. It extracts
information from source code and relates it to compliance requirements. Thereby, Codyze
provides evidence whether an implementation is compliant or non-compliant with respect to
specified requirements. Thus, it is possible to perform compliance assessments that incorporate
aspects of the software development lifecycle.

3.1 Functional description

Overall purpose. Within the EMERALD framework, Codyze provides evidence extraction from
source code of cloud services and applications. It identifies code segments that are essential for
a good cybersecurity posture and relates them to compliance requirements from certification
schemes such as ENISA’s EUCS3. From the analysis, Codyze generates evidence results that
indicate if code segments are compliant or non-compliant to specified requirements. These
evidence results are submitted to the Evidence Store for storage and further processing by the
EMERALD framework.

With its analysis, Codyze discovers potential compliance violations during software
development. This detection enables developers to mend flaws before software is released and
deployed. Thus, Codyze can reduce the cost of defects and the risk of operating non-compliant
cloud services and application. In summary, Codyze ensures compliance by design.

Context and scope. Codyze for EMERALD is an application that checks software source code for
potential compliance violations. Violations are reported such that developers can mend them.
To best utilize Codyze, it is recommended to run it as part of a CI/CD pipeline as a check. This
integration ensures that Codyze runs on every code submission and that it prevents the
deployment of non-compliant services and application.

Motivation. Codyze for EMERALD aims to assist compliance validation in source code during
software development. Thus, it provides valuable feedback early in the development lifecycle
and to developers, who can mend potential compliance violations in source code. In addition, it
prevents the deployment of non-compliant cloud services and applications as a compliance and
quality gate during CI/CD.

Requirements. The relevant requirements from D1.3 [12] with their respective implementation
state (partially / fully / not implemented) and a brief description of how they are / will be
implemented are given in Table 1.

Innovation. Codyze is going to provide compliance by design through source code analysis. It
allows to shift compliance checks left into the software development lifecycle. Historically, code
analyses have focused on detecting vulnerabilities. With Codyze, analyses results are linked to
compliance requirements to provide evidence of compliant software implementations. This
evidence is a key part for an overall compliance assessment.

Within EMERALD, Codyze is innovated by integrating a common evidence scheme provided by
the CertGraph. This integration enables an assessment of Codyze’s evidence information within
the assessment component of the EMERALD framework. It decouples Codyze’s specifications for
implementations from the compliance assessment. Thus, it enhances the integrability of Codyze
into the EMERALD framework, improves the usability of Codyze’s analysis and supports an
extension of use cases covered by Codyze.

2 https://www.codyze.io/
3 https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme

http://www.emerald-he.eu/
https://www.codyze.io/
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 30

www.emerald-he.eu

Table 1. Requirement CODYZE.01 - Extraction of security features from source code

Field Description

Requirement ID CODYZE.01

Short title Extraction of security features from source code

Description Codyze needs to check available source code artefacts for security
features.

Status Work in Progress

Priority Must

Component Codyze

Source Component, KPI

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

Validated if evidence arrives at the Orchestrator.

Progress Partially implemented - 20%

Milestone MS6: Integrated audit suite V2 (M30)

Note Work depends in parts on and influences KR2_CERTGRAPH

3.2 Technical description

The following subsections describe the technical details of Codyze for EMERALD.

3.2.1 Prototype architecture

Codyze for EMERALD consist of an application with CLI. It is executed on the source code of a
cloud service or application to be analysed. After the analysis, Codyze generates findings
pinpointing compliant and non-compliant implementations in the source code. These findings
are transformed into evidence specified by the EMERALD framework and classified according to
the CertGraph’s evidence schema. The evidence information is submitted to the Evidence Store
for subsequent assessment.

Codyze for EMERALD uses the open source Codyze library, which provides the necessary
foundation for a specification DSL and evaluators. Moreover, Codyze library uses the Code
Property Graph library, CPG library, to represent source code as a language agnostic code
property graph. The CPG library implements the source code processing to facilitate the analysis
by Codyze. Finally, Codyze for EMERALD comes with a set of specification files that describe how
software implementations relate to compliance requirements. Based on these files, Codyze
knows what to look for in the source code and how to interpret statements as compliant or non-
compliant. Details are represented in Figure 2.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 30

www.emerald-he.eu

Figure 2. Architecture of Codyze for EMERALD highlighting its modules and contributions within the
EMERALD project (i.e., modules with dashed boxes are external)

3.2.1.1 Subcomponents description

CLI. The command-line interface (CLI) is the user’s entry point to interact with Codyze for
EMERALD as an application. It collects the required information such as source code to be
analysed, additional configuration options to be applied and specifications to be checked. Based
on the provided information, Codyze drives the analysis of the source code and generates
findings. Through the CLI options, Codyze also knows where it needs to submit its findings as
evidence. The CLI is designed such that all options and arguments can be provided by a
configuration file that can be stored and versioned with the source code of the service or
application to be analysed.

Evidence Adapter. The Evidence Adapter of Codyze for EMERALD is the main module that
integrates Codyze into the EMERALD framework. It uses the evidence scheme defined by the
CertGraph to transform Codyze’s findings into EMERALD evidence and submits them to the
Evidence Store. Thereby, it ensures that findings are correctly mapped to the common evidence
types facilitating a compliance assessment within the EMERALD framework.

Codyze Library. The Codyze library4 used by Codyze for EMERALD is developed by Fraunhofer
AISEC as open-source project under the Apache License, Version 2.0, on GitHub5. It defines the
domain-specific language (DSL) to specify the connection between software implementations
and compliance requirements. In addition, it implements the evaluator for this specification DSL.
The evaluator in turn relies on the code representation and functionality of the CPG library to
evaluate a specified requirement against source code. From the evaluation, the Codyze library
generates findings indicating compliant and non-compliant parts of source code. These findings
are expressed in SARIF6 – a standard format to describe exchangeable results from static

4 https://www.codyze.io/
5 https://github.com/Fraunhofer-AISEC/codyze
6 https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

http://www.emerald-he.eu/
https://www.codyze.io/
https://github.com/Fraunhofer-AISEC/codyze
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 30

www.emerald-he.eu

application analyses, which are further processed by Codyze for EMERALD to generate evidence
within the EMERALD framework. Moreover, the Codyze library provides an extension
mechanism through plugins, that can provide additional code analysis capabilities.

The Codyze library is only a dependency for Codyze for EMERALD. It remains external to the
EMERALD project. Necessary contributions for EMERALD will be proposed upstream and code
ownership will be transferred.

CPG Library. The CPG library7 used by Codyze is developed by Fraunhofer AISEC as an open-
source project under the Apache License, Version 2.0, on GitHub8. It is an implementation of a
code property graph (CPG) [13]. A CPG is a generic graph-based representation of source code
enriched with information such as control flow, program dependence, evaluation order, type
resolution and call resolution. Thereby, it uses an abstracted representation that allows to
represent code from different programming languages with their idiosyncrasies in a language-
agnostic format. Currently, the CPG library mainly supports Java, C++, Python and Go. In
addition, the abstracted representation supports generic, reusable code exploration and code
analyses techniques. The Codyze library builds its information extraction and compliance checks
on top of the CPG library’s exploration and code analysis techniques. Therefore, Codyze is limited
to analyse code which the CPG library supports.

The CPG library is only a transitive dependency for Codyze for EMERALD through the Codyze
library. It remains external to the EMERALD project. Necessary contributions for EMERALD will
be proposed upstream and code ownership will be transferred.

Specs. Codyze defines a domain-specific language (DSL) to allow the specification of compliance
requirements as they relate to software implementations. As part of EMERALD, Codyze will
provide respective specifications to validate the compliance of cloud related compliance
schemes such as EUCS.

3.2.2 Technical specifications

Codyze for EMERALD is developed in the programming language Kotlin9 using a Java Virtual
Machine as execution platform. The build system uses Gradle10 and the project includes the
Gradle wrapper to be self-contained. The main libraries of Codyze for EMERALD are the Codyze
library and CPG library from GitHub (cf. corresponding sections in 3.2.1.1). As a result of using
this CPG library, Codyze mainly supports the programming languages detailed in Table 2.

Table 2. Supported programming languages by Codyze through the CPG library

Language CPG module Parser Supported version

Java cpg-language-java JavaParser11 Java SE 21

C++ cpg-language-cxx Eclipse CDT12 C++17

Python cpg-language-python Python ast13 (through Jep14) Python 3.12

Go cpg-language-go Go parser15 (through JNA16) Go 1.20

7 https://fraunhofer-aisec.github.io/cpg/
8 https://github.com/Fraunhofer-AISEC/cpg
9 https://kotlinlang.org/
10 https://gradle.org/
11 https://github.com/javaparser/javaparser
12 https://projects.eclipse.org/projects/tools.cdt
13 https://docs.python.org/3/library/ast.html
14 https://github.com/ninia/jep
15 https://pkg.go.dev/go/parser
16 https://github.com/java-native-access/jna

http://www.emerald-he.eu/
https://fraunhofer-aisec.github.io/cpg/
https://github.com/Fraunhofer-AISEC/cpg
https://kotlinlang.org/
https://gradle.org/
https://github.com/javaparser/javaparser
https://projects.eclipse.org/projects/tools.cdt
https://docs.python.org/3/library/ast.html
https://github.com/ninia/jep
https://pkg.go.dev/go/parser
https://github.com/java-native-access/jna

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 30

www.emerald-he.eu

Moreover, Codyze produces reports in SARIF. These reports are included in the evidence for the
EMERALD framework.

Finally, Codyze for EMERALD requires a Java runtime compatible with Java SE 17.

3.3 Delivery and usage

The following subsections detail the delivery and usage of Codyze for EMERALD. The provided
information is currently work in progress and may change.

3.3.1 Package information

Codyze for EMERALD is delivered in the form of two packages. First, Codyze is released as an
archive containing all necessary files. The structure of this package is summarized in Table 3.
Second, Codyze is distributed as a container image. The container image contains the extracted
archive of the first package and configures it to be used as an application within a container.
Therefore, the installation folder matches the overview of Table 3.

Table 3. Overview of Codyze package structure

Folder / File Description
bin/ Contains execution scripts for Windows and Linux/macOS (POSIX-

compliant shells).
docs/ Contains detailed documentation texts.
etc/ Contains sample configuration files.
lib/ Contains application and dependent libraries.
specs/ Contains specification files in Codyze’s DSL.
LICENSE License text (Apache License, Version 2.0).
README.md Short documentation including short summary description,

installation and usage instructions, and further information.

3.3.2 Installation

Installation instructions are provided as part of the README with Codyze for EMERALD 18.

In summary, Codyze has the following pre-installation requirements:

• Java SE 17 JDK17.

• Source code of the Codyze for EMERLD (see Section 3.3.5).

The following steps are required to build it:

1. In the folder with the source code run:
 ./gradlew build

2. The built application can be found as archives at:
 codyze-cli/build/distribution/

3.3.3 Instructions for use

Instructions for use are provided as part of the released Codyze for EMERALD package (cf. folder
‘docs/’ in Table 3) and are included in Codyze’s public GitLab repository18.

17 https://adoptium.net/de/temurin/releases/?version=17&package=jdk
18 https://git.code.tecnalia.com/emerald/public/components/codyze

http://www.emerald-he.eu/
https://adoptium.net/de/temurin/releases/?version=17&package=jdk
https://git.code.tecnalia.com/emerald/public/components/codyze

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 30

www.emerald-he.eu

Figure 3 illustrates how evidence extractors will be used for setting up certification targets in the
EMERALD UI. Please refer to D4.3 [14] for further visualizations of the EMERALD UI.

Figure 3. Configuration of evidence collectors in the EMERALD UI (D4.3 [14])

3.3.4 Licensing information

Codyze for EMERALD and its subcomponents are licensed as open source under Apache License,
Version 2.0. In addition, it is ensured that third-party dependencies are compatible with the
Apache License, Version 2.0. In particular, the main Codyze dependency for source code analysis,
the CPG, is also licensed as open source under Apache License, Version 2.0.

3.3.5 Download

Codyze for EMERALD is available from the public EMERALD GitLab repository18 hosted by
TECNALIA. The repository will host the source code, the documentation and the binary artefacts
consisting of a container image and a release archive.

3.4 Limitations and future work

Codyze for EMERALD is based on Codyze for MEDINA and aims to reach TRL 6-7. Changes in the
EMERALD framework compared to the MEDINA framework require adjustments to Codyze.
Primarily, Codyze for MEDINA reported evidence and assessment results. In contrast, the
EMERALD framework uses a common taxonomy of evidence to create a Certification Graph
(CertGraph) to coalesce all information from gathered evidence. As a result, Codyze for
EMERALD can report only evidence classified according to the taxonomy and ontology of the
CertGraph. The assessment of the information is dedicated to the assessment component within
EMERALD. These changes require a change in the evidence collection and classification within
Codyze and are part of the ongoing work in EMERALD WP2, Task 2.2.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 30

www.emerald-he.eu

4 eknows evidence extractor

eknows19 [15] [16] is a software analysis platform developed by SCCH. The platform supports
rapid development of multi-language software analysis tools from pre-built modules, which
build on a technology-agnostic, generic layer and are extended to meet use case-specific
requirements.

4.1 Functional description

Overall purpose. To efficiently create knowledge extraction techniques delivering required
evidence to verify if application source code complies to security requirements, we rely on the
multi-language software platform eknows. This platform quickly and flexibly supports the
creation of evidence extraction functions by reusing prefabricated parsing, analysis, and
generation modules. eknows provides support for main reverse engineering activities, i.e.,
knowledge extraction, transformation, analysis, and generation (visualization) as depicted in
Figure 4). The cornerstone of the platform implementation is a generic programming language-
independent representation of source code that can be reused across analysis and generation
modules to prepare suitable evidence.

Figure 4. Reverse engineering activities supported by the software platform eknows [15]. Further
explanations of subcomponents are provided in Section 4.2.1.1.

Context and scope. While the development of the platform was driven by domain-specific
requirements from various stakeholders, e.g., business analysts or software architects, and
multi-technology use cases, an architecture that supports reuse of modules for the analysis of
software and generation of artefacts from different programming languages was envisaged from
the beginning.

The delivered prototype builds upon selected modules of the platform (eknows core) and
provides a “wrapper” containing the newly developed functions for EMERALD to extract
security-related evidence from application source code (eknows evidence extractor). Thereby,

19 https://www.scch.at/software-science/projekte/detail/eknows

http://www.emerald-he.eu/
https://www.scch.at/software-science/projekte/detail/eknows

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 30

www.emerald-he.eu

generic modules for the model-guided symbolic execution of use case-specific conformity
checks and fact extraction are extended. Also, generic modules for business rule extraction for
domain-specific rule and constraint localization will be extended. New analyses will be necessary
to break down high-level security controls from catalogues, such as EUCS or BSI C5, into
checkable source code properties. New generation functions to create evidence based on these
source code properties and to integrate them into CertGraph will be provided. Which concrete
modules are needed from eknows core, and which new parts will be added is not yet clear at the
time of writing. It depends on which security controls are derived from the security catalogues,
and which programming languages are used in the cloud application code. Details on this scope
will be described in the next deliverable D2.3 [5].

Motivation. As already said, Codyze and eknows will not be technically integrated, as both can
co-live in the EMERALD CaaS framework. The motivation to include eknows in the EMERALD
framework is, on the one hand, to demonstrate that the framework is open to extension and
not tight to a specific tool. On the other hand, the coverage of security controls should be
increased by including eknows as an additional source extractor in the EMERALD framework to
be able to check more comprehensively whether the available source code conforms to the
selected security controls.

Requirements. The relevant requirements from D1.3 [12] with their respective implementation
state (partially / fully /not implemented) and a brief description of how they are / will be
implemented are given in tables from Table 4 to Table 8.

Table 4. EKNOWS.01 - Integration into existing systems

Field Description

Requirement ID EKNOWS.01

Short title Integration into existing systems

Description The component should be integrable into existing systems,
development environments and workflows, for example by using
APIs like REST by compatibility with CI/CD-Pipelines.

Status Accepted

Priority Must

Component eknows

Source Component

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

The availability of the API will be tested via an OpenAPI client.

Progress Partially implemented – 30%

Milestone MS3: Integrated audit suite V1 (M18)

The prototype currently offers a command line interface, which can be integrated in a flexible
way.

Table 5. EKNOWS.02 - Resilience while analysing erroneous code

Field Description

Requirement ID EKNOWS.02

Short title Resilience while analysing erroneous code

Description The source code analysed by the component could be erroneous,
for example syntactical and semantical errors could be encountered

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 30

www.emerald-he.eu

while parsing it. Furthermore, an unknown dialect of a language
could be encountered. An appropriate error handling strategy for
such situations is necessary: Erroneous code will be skipped and not
be further analysed. A corresponding error message will be stored
in the gathered evidence.

Status Accepted

Priority Should

Component eknows

Source Component

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

The component will receive erroneous source code. Processing
should run through, and a corresponding error message should be
found in the generated evidence.

Progress Partially implemented – 70%

Milestone MS5: Components V2 (M24)

Some error cases are shown to the user.

Table 6. EKNOWS.03 - Multi-language support

Field Description

Requirement ID EKNOWS.03

Short title Multi-language support

Description The component should be able to analyse source code written in
different programming languages and should support at least Java
and Python.

Status Accepted

Priority Must

Component eknows

Source Component

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

The component will receive source files written in Java and Python
and should be able to process each language and generate an
output.

Progress Partially implemented – 50%

Milestone MS5: Components V2 (M24)

Currently, the Java frontend is used.

Table 7. EKNOWS.04 - Support EMERALD evidence format

Field Description

Requirement ID EKNOWS.04

Short title Support EMERALD evidence format

Description The analysis of results is offered in a structured and standardized
format, the EMERALD evidence format (see data model in [9]). This
enables further processing and queries in other components.

Status Accepted

Priority Must

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 30

www.emerald-he.eu

Component eknows

Source Component

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

The component receives source code to analyse and generates an
output from it. This output will be validated against the schema of
the evidence format.

Progress Not implemented – 0%

Milestone MS3: Integrated audit suite V1 (M18)

Simple JSON output is generated so far.

Table 8. EKNOWS.05 - Static code analysis

Field Description

Requirement ID EKNOWS.05

Short title Static code analysis

Description The component uses static code analysis methods. Such methods
are, for example, data flow analysis, call graph analysis, symbolic
execution, or control flow analysis. One or multiple methods
(possibly in combination) will be used to gather evidence. The actual
used method(s) depend(s) on the metric, for which evidence should
be extracted.

Status Accepted

Priority Must

Component eknows

Source Component

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI:1.1

Validation acceptance
criteria

Code review: Review code and check if static code analysis methods
are used/implemented.

Progress Partially implemented – 60%

Milestone MS5: Components V2 (M24)

Currently, symbolic execution is used.

Innovation. In addition to the described innovation of providing compliance by design through
source code analysis in cloud applications in Section 3.1, using a multi-language software
platform for rapid development of evidence extraction techniques from pre-built analysis and
generation modules for certification of cloud applications is a big advancement. Following the
extract-abstract-view metaphor [17] that can be considered as reference architecture for
generating suitable evidence for security metrics in EMERALD, as well as using a standard-based
approach (i.e., the abstract syntax tree metamodel (ASTM)20 of the Object Management Group
(OMG)) as the generic representation of the parsed source code, is another notable aspect.

20 https://www.omg.org/spec/ASTM/1.0/About-ASTM

http://www.emerald-he.eu/
https://www.omg.org/spec/ASTM/1.0/About-ASTM

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 30

www.emerald-he.eu

4.2 Technical description

4.2.1 Prototype architecture

Figure 5 shows an overview (not fully complete) of the consisting modules of the eknows
platform. At the bottom of the figure, various frontends using specific parsers for extracting
knowledge from different programming languages, such as Java, C#, and PL/SQL, are depicted.
The generic representation of the parsed source code based on the ASTM metamodel builds the
basis for a set of analyses, such as Call Graph, Control Flow, and Dependency. Various generation
modules for visualizing application code as reports or diagrams form the top of the platform.

As already mentioned, only a selected subset of these building blocks is reused / extended in
the delivered prototype and additional functions will be developed. The prototype architecture
will be improved and detailed as the concrete security controls and metrics are available, which
will be reported in the next version of this deliverable, namely D2.3 [5].

Figure 5. Overview of eknows platform building blocks [16]

4.2.1.1 Subcomponents description

The eknows platform provides pre-built modules that facilitate 1) language parsing and
transformation of code into a generic abstract syntax tree (AST), 2) structural and behavioural
analysis of software, and 3) reporting and visualization of analysis results (see Figure 5). Software
solutions built on top of eknows integrate required modules as-is and add functionality required
for specific use cases.

Extraction modules, also referred to as language frontends, parse information from software
systems (i.e., source code and comments) and transform parse trees into ASTs and generic data
structures used in analysis. eknows currently supports over 14 programming languages. To
provide robust and up-to-date parsing infrastructure, eknows reuses freely available parsing
components as far as possible. For instance, to parse Java or C++, Eclipse JDT and Eclipse CDT
are used. If no ready-to-use source code parser is available, parser generators (i.e., ANTLR and
CoCo/R) are used to generate parsing infrastructure from context-free grammar specifications.
In the delivered prototype we will most likely rely on the Java and Python frontends.

To reuse analysis components across different technology stacks, eknows builds upon the ASTM.
The standard provided by the OMG is used as common intermediate representation and is

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 30

www.emerald-he.eu

composed of the generic AST metamodel (GASTM) and a set of complementary, language-
specific specifications, called the specialized AST metamodels (SASTM). To reuse analysis
components as far as possible, language-dependent models are kept to a minimum. In the
delivered prototype we will reuse and extend existing analysis, such as the symbolic evaluation,
and will develop new analysis depending on the selected security controls and metrics, e.g., the
TLS analysis.

Finally, eknows provides a set of visualization and reporting components. Generated elements
fall into the categories text, mathematical formula, tables, charts, or graphs. Input for these
modules are ASTM data structures or specific result data structures created by analysis modules.
Graphs are output in intermediate format, e.g., Graphviz DOT. To generate documentation, a
format-independent data structure is used to specify document structure and content (e.g.,
sections, paragraphs, formulas, figures, or tables). Document specifications can be output as
LaTeX, HTML, Markdown, and Open Document Format (ODF). For reporting evidence in the
delivered prototype, we will refine the existing functionality to generate the results in the
defined EMERALD format.

4.2.2 Technical specifications

The Java-based platform (eknows core) comprises over 350K source lines of code (SLOC). It uses
libraries as dependencies to implement its functionality. For source code parsing, eknows uses
language-specific parsers (see Table 9) traditionally built with compiler-generator tools. A
central point is the generic representation of the parsed content. The dependencies are
managed using Maven21.

Table 9. Supported programming languages by eknows

Language Parser Supported version

Adele CoCo/R22 n.a.

B&R (Bernecker + Rainer) CoCo/R n.a.

C, C++ Eclipse CDT23 C++17

C# ANTLR24 C# 7.0

CIL/.NET n.a. .NET 4.5

COBOL Koopa25 COBOL 85

Codesys/Bachmann Xtext26 3

Fortran Open Fortran27 77/2003

JCL CoCo/R JCL z/OS 2.2

Java Eclipse JDT28 Java 8

Javascript Mozilla Rhino29 ES 6

Natural CoCo/R v 4.2.6

Oberon CoCo/R n.a.

Pascal CoCo/R Pascal 7.0

PL/I CoCo/R z/OS 4.1

21 https://maven.apache.org/
22 https://ssw.jku.at/Research/Projects/Coco
23 https://projects.eclipse.org/projects/tools.cdt
24 https://www.antlr.org/
25 https://github.com/krisds/koopa
26 https://eclipse.dev/Xtext/
27 https://github.com/OpenFortranProject/open-fortran-parser
28 https://www.eclipse.org/jdt
29 https://github.com/mozilla/rhino

http://www.emerald-he.eu/
https://maven.apache.org/
https://ssw.jku.at/Research/Projects/Coco
https://projects.eclipse.org/projects/tools.cdt
https://www.antlr.org/
https://github.com/krisds/koopa
https://eclipse.dev/Xtext/
https://github.com/OpenFortranProject/open-fortran-parser
https://www.eclipse.org/jdt
https://github.com/mozilla/rhino

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 30

www.emerald-he.eu

Language Parser Supported version

PL/SQL JDeveloper/Akiban30 9.1

Python ANTLR Python 3.6

Sigmatek ANTLR n.a.

SQL Akiban MySQL 5.6

The delivered prototype, the eknows evidence extractor, is based on eknows core and reuses
modules as far as possible.

The eknows evidence extractor consists of an executable binary distribution and runs stand-
alone. Like Codyze, the eknows evidence extractor is executed on source code of cloud
applications and services. The integration of the eknows evidence extractor at the CSPs requires
a platform for CI/CD. The eknows evidence extractor can be integrated into CI/CD pipelines by
using the binary distribution. In the current state it is not yet integrated with other components.
Currently, a CLI is provided, and a REST interface can be provided in the future, if needed.
Findings are generated as console output. This output will be submitted to the Evidence Store of
the EMERALD framework in the specified data format following the terms defined in the
CertGraph ontology.

4.3 Delivery and usage

The following subsections detail the delivery and usage of eknows for EMERALD. The provided
information is currently work in progress and may change in the future.

4.3.1 Package information

The eknows evidence extractor is developed as a Java application with the support of Maven31
as build tool. Table 10 shows the structure of the Gitlab repository32 and its contents.

Table 10. Overview and description of package structure for the eknows evidence extractor

Folder Description
eknows/ The prebuilt eknows binaries should be placed here. In

addition, installation scripts are provided in this folder.
src/ Source code root.
src/main/ Source code for the eknows evidence extractor.
src/test/ Source code for unit tests of the eknows evidence extractor.
testfiles/ Test files, which are used for unit tests and can be used for

demo purposes as well.
LICENSE License text (Apache License, Version 2.0).
README.md Compact guide on how to build and use the extractor.

4.3.2 Installation

Requirements:

• Java 17 JDK33.

• Maven31.

• Source code of the eknows evidence extractor (see Section 4.3.5).

30 https://github.com/brunoribeiro/sql-parser
31 https://maven.apache.org/download.cgi
32 https://git.code.tecnalia.com/emerald/public/components/eknows
33 https://adoptium.net/de/temurin/releases/?version=17&package=jdk

http://www.emerald-he.eu/
https://github.com/brunoribeiro/sql-parser
https://maven.apache.org/download.cgi
https://git.code.tecnalia.com/emerald/public/components/eknows
https://adoptium.net/de/temurin/releases/?version=17&package=jdk

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 30

www.emerald-he.eu

The following steps are required to build the eknows evidence extractor:

1. Install eknows core for EMERALD (this step is only required when building for the first
time or when eknows core for EMERALD is updated).

a. Get the eknows-core-for-emerald JAR file from the internal repository (see
Section 4.3.5).

b. Add the JAR file to the eknows folder.
c. Run install.cmd or ./install within the eknows folder.

2. Build-
a. Run mvn package -DskipTests.

3. The built extractor can be found at
target/eknows-evidence-extractor-<version>-jar-with-dependencies.jar.

4.3.3 Instructions for use

The eknows evidence extractor can be run from the command line for now by invoking:

java -jar target/eknows-evidence-extractor-<version>-jar-with-dependencies.jar -f <file to analyse>

This will generate a JSON output, which contains the analysed file name and, in the current
development status, the detected TLS versions.

Figure 3 illustrates how evidence extractors will be used for setting up certification targets in the
EMERALD UI. Please refer to D4.3 [14] for further visualizations of the EMERALD UI.

4.3.4 Licensing information

The licensing is split into two parts:

1. The eknows evidence extractor, which is developed in the context of EMERALD, is
licensed under Apache 2.034 and will be made available to the public as open-source
software.

2. The foundation of the extractor, eknows core, is closed source and binaries are made
available to the EMERALD project consortium within the context of the project under
the eknows Binary Usage Software License (see Appendix A: eknows Binary Usage
Software License).

4.3.5 Download

The eknows evidence extractor is available from the public EMERALD GitLab repository35 hosted
by Tecnalia. The repository is going to host the source code and the documentation.

The binaries for eknows core are available to the EMERALD project consortium in a separate
private EMERALD GitLab repository36.

4.4 Limitations and future work

Currently, the extractor just supports the analysis of source code written in Java and at least one
additional programming language will be added in the future, however the eknows platform

34 http://www.apache.org/licenses/LICENSE-2.0
35 https://git.code.tecnalia.com/emerald/public/components/eknows
36https://git.code.tecnalia.com/emerald/private/components/eknows/eknows-core-for-emerald

[internal use only - authentication required]

http://www.emerald-he.eu/
http://www.apache.org/licenses/LICENSE-2.0
https://git.code.tecnalia.com/emerald/public/components/eknows
https://git.code.tecnalia.com/emerald/private/components/eknows/eknows-core-for-emerald

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 30

www.emerald-he.eu

already supports a variety of programming languages, which can be integrated to the extractor
if needed.

Further, the eknows evidence extractor currently provides one use case (the extraction of the
configured TLS versions). Depending on the certification requirements, a more extensive
analysis must be implemented.

Finally, the eknows evidence extractor will be fully integrated and deployed in the EMERALD
environment.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 30

www.emerald-he.eu

5 Conclusions

The EMERALD project proposes a holistic approach to evidence collection, focusing on all levels
of the cloud service, including the infrastructure layer (e.g., virtual resources) to the business
layer (e.g., policies and procedure), and the implementation layer (e.g., source code files).

In this deliverable, which is the initial output of Task 2.2, we presented the technical report
about the design, architecture, and current implementation states of EMERALD source evidence
extraction components. The components follow the overall EMERALD framework approach and
are aligned with the technical requirements gathered in the scope of WP1. This report presents
the relation of the presented components with the other parts of the EMERALD framework and
details the individual components’ internal structure, their subcomponents, and information
about their technical implementation.

The components presented in this document include two evidence extractors supporting the
assessment of the security and compliance of a cloud application’s source code, i.e., Codyze and
eknows evidence extractor. At this point of the project, the components, based on some
background works, have already working prototypes that can be (partially) integrated with some
other EMERALD components and satisfy some of their respective requirements, as expressed in
D3.1 [8]. Future work will also deal with complying to the needs of business requirements of the
selected security controls developed in WP5.

In the further course of the project, the source evidence extractors Codyze and eknows evidence
extractor will be integrated into the EMERALD framework. The subsequent and final iteration of
this report (D2.3 [5]) will provide the progress of the updated components in project month 24.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 30

www.emerald-he.eu

6 References

[1] EMERALD Consortium, “D2.4 AMOE – v1: Evidence extraction from policy documents that
can be integrated with the certification graph,” 2024.

[2] EMERALD Consortium, “D2.6 ML model certification – v1: Security and privacy preserving
evidence that can be integrated with the certification graph,” 2024.

[3] EMERALD Consortium, “D2.8 Runtime evidence extractor – v1: Evidence extraction from
runtime data that can be integrated with the certification graph,” 2024.

[4] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage: Description of a
uniform schema for storing and linking heterogenous data,” 2024.

[5] EMERALD Consortium, “D2.3 Source Evidence Extractor – v2: Evidence extraction from
source code that can be integrated with the certification graph,” 2025.

[6] EMERALD Consortium, “D2.10 Certification Graph– v1: Integration of the graph with
semantically linked and combined evidence,” 2025.

[7] EMERALD Consortium, “D2.11 Certification Graph– v2: Integration of the graph with
semantically linked and combined evidence,” 2026.

[8] EMERALD Consortium, “D3.1 Evidence Assessment and Certification - Concepts - v1,”
2024.

[9] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms - v1,” 2024.

[10] EMERALD Consortium, “EMERALD Glossary in D1.3- EMERALD solution architecture - v1,”
2024.

[11] EMERALD Consortium, “D3.3 Evidence Assessment and Certification-Implementation-v1,”
2024.

[12] EMERALD Consortium, “D1.3 EMERALD solution architecture - v1,” 2024.

[13] K. Weiss and C. Banse, “A Language-Independent Analysis Platform for Source Code,”
arXiv, 2022.

[14] EMERALD Consortium, “D4.3 User interaction and user experience concept – v1,” 2024.

[15] V. Geist, M. Moser, J. Pichler and F. Schnitzhofer, “Innovating Industry with Research:
eknows and Sysparency,” IEEE Software, pp. 1-7, 2024.

[16] M. Moser and J. Pichler, “eknows: Platform for multi-language reverse engineering and
documentation generation,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 559-568, 2021.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 30

www.emerald-he.eu

[17] C. Lange, H. Sneed and A. Winter, “Comparing graph-based program comprehension tools
to relational database-based tools,” in 9th International Workshop on Program
Comprehension (IWPC 2001), pp. 209-218, 2001.

http://www.emerald-he.eu/

DRAFT
D2.2 - Source Evidence Extractor – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 30

www.emerald-he.eu

Appendix A: eknows Binary Usage Software License

This Software Usage License ("License") is granted to all partners of the EMERALD project
consortium ("Licensee") by Software Competence Center Hagenberg GmbH, a legal entity
organized and existing under the laws of Austria, having its principal place of business at
Softwarepark 32a,4232 Hagenberg, Austria ("Licensor").

1. Scope of Use:

The Licensee is granted a non-exclusive, non-transferable license to use java binaries (jar) of the
eknows software platform (hereinafter referred to as "the Software") solely for development,
piloting, and evaluation purposes within the EMERALD project context. Usage of the Software
for any other purpose or in any other context is strictly prohibited.

2. Restrictions:

a. Licensee shall not modify, distribute, sublicense, or transfer the Software to any third party.

b. Licensee shall not use the Software outside the project context defined above.

c. Licensee shall not reverse engineer, decompile, or disassemble the Software.

3. Intellectual Property:

All intellectual property rights, including but not limited to copyrights, patents, and trade
secrets, in and to the Software remain the sole property of the Licensor.

4. Term and Termination:

This Agreement shall be effective from the date of acceptance and shall continue until
terminated by either party. Licensor may terminate this Agreement immediately upon breach
of any term herein.

5. Governing Law:

This Agreement shall be governed by and construed in accordance with the laws of Austria.

6. Limitation of Liability:

In no event shall the Licensor be liable for any special, indirect, incidental, consequential, or
exemplary damages, including, but not limited to, loss of profits or data, arising out of or in
connection with the use or performance of the Software, even if Licensor has been advised of
the possibility of such damages.

Licensor: Software Competence Center Hagenberg GmbH Softwarepark 32a 4232 Hagenberg Austria
Tel.: +43 50 343 E-Mail: office@scch.at Web: http://www.scch.at

scch 2024

http://www.emerald-he.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Source evidence extractors in the EMERALD architecture
	3 Codyze for EMERALD
	3.1 Functional description
	3.2 Technical description
	3.2.1 Prototype architecture
	3.2.1.1 Subcomponents description

	3.2.2 Technical specifications

	3.3 Delivery and usage
	3.3.1 Package information
	3.3.2 Installation
	3.3.3 Instructions for use
	3.3.4 Licensing information
	3.3.5 Download

	3.4 Limitations and future work

	4 eknows evidence extractor
	4.1 Functional description
	4.2 Technical description
	4.2.1 Prototype architecture
	4.2.1.1 Subcomponents description

	4.2.2 Technical specifications

	4.3 Delivery and usage
	4.3.1 Package information
	4.3.2 Installation
	4.3.3 Instructions for use
	4.3.4 Licensing information
	4.3.5 Download

	4.4 Limitations and future work

	5 Conclusions
	6 References
	Appendix A: eknows Binary Usage Software License

