
DRAFT
Deliverable D2.8

Runtime Evidence Extractor – v1

Editor(s): Angelika Schneider, Florian Wendland

Responsible Partner: Fraunhofer AISEC (FHG)

Status-Version: Final v1.0

Date: 31.10.2024

Type: OTHER

Distribution level: PU

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 23

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D2.8 – Runtime Evidence Extractors – v1

Due Date of Delivery to the EC 31.10.2024

Workpackage responsible for the
Deliverable:

WP2 – Methodology for knowledge extraction

Editor(s): Angelika Schneider (FHG), Florian Wendland (FHG)

Contributor(s): -

Reviewer(s):
Verena Geist (SCCH)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, and WP5

Abstract: This deliverable presents a tool for evidence extraction
from runtime information that can be integrated with
the certification graph.
It is the result of work performed in Task 2.5. This
document is a first/interim version, the final version on
runtime evidence extractors will be reported in D2.9.

Keyword List: Evidence collection, runtime information, cloud,
Clouditor-Discovery, technical evidence.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 23

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 09.09.2024 First draft version, ToC, executive
summary, about this deliverable

Angelika Schneider
(FHG)

v0.2 23.09.2024 Limitations and future work, prototype
architecture, functional description

Angelika Schneider
(FHG)

v0.3 24.09.2024 Functional description, document
structure, appendices prepared

Angelika Schneider
(FHG)

v0.4 25.09.2024 Component card Clouditor-Discovery Angelika Schneider
(FHG)

v0.5 27.09.2024 Renaming in-toto, add discovery
component flags image, incorporating
comments from Christian Banse.

Angelika Schneider
(FHG)

v0.6 07.10.2024 Description of Codyze-Provenance Florian Wendland
(FHG)

v0.7 07.10.2024 Delete appendix, add conclusion Angelika Schneider
(FHG)

v0.8 08.10.2024 Finalizing document for the internal
review

Angelika Schneider
(FHG)

v0.9 14.10.2024 Internal QA review Verena Geist (SCCH)

v0.10 16.10.2024 Incorporate QA review comments Angelika Schneider
(FHG)

v0.11 18.10.2024 Incorporate QA review comments Florian Wendland,
Angelika Schneider
(FHG)

v0.12 28.10.2024 Final review Cristina Martínez/
Juncal Alonso
(TECNALIA)

v0.13 29.10.2024 Incorporate final review comments Florian Wendland,
Angelika Schneider
(FHG)

v1.0 31.10.2024 Submitted to the European
Commission

Cristina Martínez/
Juncal Alonso
(TECNALIA)

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 23

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

2 Runtime evidence extractors in the EMERALD architecture ... 10

3 Clouditor-Discovery ... 12

3.1 Functional description ... 12

3.2 Technical description ... 13

3.2.1 Prototype architecture .. 13

3.2.2 Technical specifications ... 14

3.3 Delivery and usage ... 15

3.3.1 Package information .. 15

3.3.2 Installation ... 15

3.3.3 Instructions for use .. 16

3.3.4 Licensing information .. 18

3.3.5 Download .. 18

3.4 Limitations and future work .. 18

4 Codyze-Provenance ... 19

4.1 Functional description ... 19

4.2 Technical description ... 20

4.2.1 Prototype architecture .. 20

4.2.2 Technical specifications ... 20

4.3 Delivery and usage ... 20

4.3.1 Package information .. 20

4.3.2 Installation ... 20

4.3.3 Instructions for use .. 21

4.3.4 Licensing information .. 21

4.3.5 Download .. 21

4.4 Limitations and future work .. 21

5 Conclusions .. 22

6 References ... 23

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 23

www.emerald-he.eu

List of tables

TABLE 1. REQUIREMENT CLDISC.01 - DISCOVERY OF SECURITY FEATURES OF INFRASTRUCTURE COMPONENTS 13
TABLE 2. OVERVIEW OF THE IMPORTANT API FUNCTIONS FOR THE CLOUDITOR-DISCOVERY 14
TABLE 3. OVERVIEW OF THE PACKAGE STRUCTURE OF CLOUDITOR-DISCOVERY. .. 15
TABLE 4. OVERVIEW OF TENTATIVE PACKAGE STRUCTURE FOR CODYZE-PROVENANCE 20

List of figures

FIGURE 1. EXCERPT OF THE EMERALD COMPONENT DIAGRAM [8]. THE HIGHLIGHTED COMPONENT CLOUDITOR-
DISCOVERY AND THE COMPONENT CODYZE-PROVENANCE, WHICH IS PART OF THE CODYZE COMPONENT,
ARE DESCRIBED IN THIS DELIVERABLE. .. 11

FIGURE 2. OVERVIEW OF THE AVAILABLE OPTIONS FOR CLOUDITOR-DISCOVERY ... 16
FIGURE 3. EMERALD UI VIEW FOR SETTING THE EVIDENCE COLLECTORS FOR A CERTIFICATION TARGET (D4.3

[13]) ... 17
FIGURE 4. EMERALD UI VIEW FOR THE AVAILABLE FUNCTIONALITIES OF AN EVIDENCE COLLECTOR (D4.3 [13])

 ... 17

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 23

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

AMOE Assessment and Management of Organisational Evidence

API Application Programming Interface

AWS Amazon Web Services

CertGraph Certification Graph

CI/CD Continuous Integration / Continuous Deployment

CLI command-line interface
Codyze Static Code Analyzer from FHG

CSAF Common Security Advisory Framework

CSP Cloud Service Provider

eknows Platform for Software Analysis from SCCH

GA Grant Agreement to the project

GitLab Version control and DevOps platform

gRPC Google Remote Procedure Call

in-toto Framework defining attestation format for software supply chains

KPI Key Performance Indicator

KR Key Result

MEDINA Predecessor project of EMERALD

MVP Minimum Viable Product

REST Representational State Transfer

SLSA Supply-chain Levels for Software Artifacts

TOM Technical and Organisational Measure

TRL Technology Readiness Level

WP Work Package

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 23

www.emerald-he.eu

Executive Summary

This deliverable presents the initial design, architecture, and implementation state of the
runtime evidence extractors Clouditor-Discovery and Codyze-Provenance of WP2. It contributes
to the key result KR1-EXTRACT of EMERALD, a framework to continuously extract runtime
information of a cloud service and prepare suitable evidence based on them.

EMERALD follows a knowledge graph-based approach to provide a unified view of the cloud
service under certification at different layers of the service, ranging from the infrastructure layer
(e.g., virtual resources), to the business layer (e.g., policies and procedures), to the
implementation layer (e.g., source code files) and data layer (e.g., increasingly used AI models)
in cloud applications. The runtime evidence extractors, developed in Task 2.5 and described in
this deliverable, aim on the one hand at identifying critical security-related functionality such as
data encryption, transport encryption, or authentication in cloud infrastructure components. On
the other hand, they establish software provenance and artefact attestation to completely track
software from its inception as source code to deployed build artefacts. This is complementary
to the evidence gathered in Task 2.2. Other related deliverables in WP2, all due at project month
12 (October 2024), provide functional and technical details on further evidence extractors from
different sources, i.e., D2.2 [1] on source evidence extraction in Task 2.2, D2.4 [2] on evidence
extraction from policy documents in Task 2.3, and D2.6 [3] on security and privacy preserving
evidence extraction in Task 2.4. All these details contributed to D2.1 [4] on the overall
information model of the certification graph in Task 2.1.

This document starts by illustrating how the runtime extractors fit into the overall EMERALD
architecture. The main part provides functional and technical descriptions of the evidence
extractors Clouditor-Discovery and Codyze-Provenance, including their purpose and scope, the
(current and planned) coverage of the EMERALD requirements, and the components’ internal
architectures. These descriptions are complemented by information on delivery and usage, as
well as on limitations and future work. Finally, the document concludes with a short summary.

The runtime evidence extractors described in this deliverable contribute to KR1-EXTRACT by
providing next-generation evidence gathering tools and techniques based on a knowledge graph
approach. One extractor – Clouditor-Discovery –has currently the initial prototype implemented
and is ready to be integrated with other components of the EMERALD architecture. The
requirement of the component is already partially satisfied by the presented prototype. The
second extractor – Codyze-Provenance – is a new component within the EMERALD architecture
and is currently in its initial design phase. Based on the work described in this deliverable, the
runtime evidence extractors will be further extended and integrated into the EMERALD
framework.

This is the first iteration of the deliverable coming from Task 2.5. The second and final version
of this deliverable with the updated extractors will be delivered with D2.9 [5] in project month
24 (October 2025). Evidence will be prepared according to the integrated, graph-based model
of semantically linked and combined evidence, provided in D2.10 (interim version) [6] in project
month 15 (January 2025) and D2.11 (final version) [7] in project month 27 (January 2026). The
extracted evidence will be stored and assessed, i.e., to verify the implementation of security
metrics, in the scope of WP3.

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 23

www.emerald-he.eu

1 Introduction

EMERALD aims to provide a next generation set of evidence gathering tools and techniques
based on a knowledge graph approach. KR1-EXTRACT supports an improved and unified tool-
supported approach to continuously extract knowledge from different layers of a cloud service,
e.g., infrastructure, platform, runtime information, policy documents, software, and AI models.

The objective of WP2 is to establish a unified view of the cloud service being certified, known as
the certification target, by extracting and enriching knowledge of the different layers of the
service and providing suitable evidence for security metrics. A major part of this work package
is research and design of multiple tools and techniques to extract knowledge out of various
sources. A graph-based model, called the certification graph (CertGraph), serves as a common
structure that is filled by all evidence extraction components.

1.1 About this deliverable

The goal of this deliverable is to present the design and implementation of the EMERALD
evidence extractors, that extract runtime information from cloud services. This is a report on
the initial prototype reflecting an early stage of implementation and integration of the extractor
and is the first of two iterations of deliverables, resulting from Task 2.5.

Evidence on the runtime information level is gathered by the runtime information evidence
extractor Clouditor-Discovery, which supports the CertGraph data model. The Clouditor-
Discovery component is based on the respective microservice of Clouditor1 and was already used
in MEDINA2. It focuses on generating evidence for security-related findings, such as encryption
in use, at rest encryption or restricted ports. While the component was at TRL 5 in MEDINA, it
should be advanced to TRL 7 in EMERALD.

Another source of runtime information are CI/CD pipelines and their jobs. During the build of a
cloud service or application from source code, jobs such as application security testing, software
composition analysis and secure software development measures augment the confidence in
the security of the final build artefact. Codyze-Provenance is a new addition to EMERALD and
currently under design that intends to gather evidence about CI/CD pipeline executions. This
evidence would facilitate to assess security enhancing jobs executed during a build in a CI/CD
pipeline. Moreover, Codyze-Provenance will provide attestations for executed jobs and link
them together to provide provenance. From attestation and provenance reports it becomes
possible to track the complete supply chain of software artefacts from source code to deployed
artefacts.

Furthermore, application-specific runtime information (e.g., found in log files) might be used to
provide additional context regarding the executed functionality. For now, it is just an idea and
not implemented.

1.2 Document structure

The document is structured as follows.

In Section 2, we discuss how the runtime evidence extractors fit into the overall EMERALD
architecture and their relationship with other components. Section 3 describes the Clouditor-
Discovery evidence extractor, which provides the extraction of runtime information of cloud
services. Section 4 describes the Codyze-Provenance evidence extractor, which provides
traceability and attestation along CI/CD pipelines. For each extractor, we provide functional and

1 https://github.com/clouditor/clouditor/tree/main/service/discovery
2 https://medina-project.eu/

http://www.emerald-he.eu/
https://medina-project.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 23

www.emerald-he.eu

technical descriptions, along with information about delivery, usage, limitations, and future
work.

Section 5 ends up with the conclusions of this deliverable.

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 23

www.emerald-he.eu

2 Runtime evidence extractors in the EMERALD architecture

This section describes how the runtime evidence extractors interact with (selected) EMERALD
components on a conceptual level. Figure 1 shows the EMERALD high-level architecture as a
component diagram [8]. In EMERALD, a component is defined as “any part of the EMERALD
ecosystem that has a specific functionality and can be considered a separate entity with respect
to other components” [9]. In contrast, a tool is a “software element that has several disparate
functions and therefore can be composed by several components” [9]. Therefore, Clouditor-
Discovery and Codyze-Provenance are referred to as components rather than tools in the context
of EMERALD.

The components for collecting evidence about technical and organisational measures, i.e.,
AMOE, eknows, AI-SEC, Clouditor-Discovery, and Codyze, are represented at the bottom part of
Figure 1. The source evidence extractor components Codyze and eknows [1] obtain technical
evidence from the analysis of the source code of cloud applications. AMOE [2], the component
for organisational evidence gathering from MEDINA, analyses various documents and policies of
the cloud service provider (CSP) and produces evidence about the CSP's compliance to
organisational requirements of the certification framework. Clouditor-Discovery, also originated
from MEDINA, collects evidence about the secure configuration of cloud resources, with a focus
on runtime data extraction in EMERALD. AI-SEC [3] is a newly developed component in EMERALD
and analyses AI models for several key evidence regarding robustness against adversarial
attacks, explainability, and fairness. Codyze-Provenance is a new addition to Codyze to support
runtime evidence extraction and is currently under design. In the EMERALD component diagram,
it is part of the represented Codyze component.

In MEDINA, some extraction components implemented their own assessment, which causes
more maintenance effort if requirements change over time. Thus, centralizing assessment is one
of the goals in EMERALD. This is done by delivering exclusively (or as far as possible) raw
evidence to the Evidence Store [10]. All WP2 extraction components, which extract knowledge
from the various layers of a cloud service (i.e., policy documents, source code, cloud interfaces,
AI models, etc.), provide (part of) evidence (e.g., for transport encryption), which is then mapped
to the EMERALD evidence format using the terms described in the CertGraph Ontology [4]. This
evidence information is stored in the Evidence Store following the defined schema and is used
to assess the metrics defined in the Repository of Controls and Metrics [10].

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 23

www.emerald-he.eu

Figure 1. Excerpt of the EMERALD component diagram [8]. The highlighted component Clouditor-
Discovery and the component Codyze-Provenance, which is part of the Codyze component, are described

in this deliverable.

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 23

www.emerald-he.eu

3 Clouditor-Discovery

The Clouditor-Discovery component is responsible for discovering security-relevant
configurations from cloud resources. As such, it is one of the evidence collectors that can be
integrated into the EMERALD framework. The following sections describe the component in
detail regarding the overall purpose, important requirements, architecture, technical aspects,
usage and the limitations and future work.

3.1 Functional description

Overall purpose. The component Clouditor-Discovery serves the purpose of identifying and
discovering security-related configurations across various cloud resources within the EMERALD
project. Its primary goal is to enhance security compliance by discovering security-relevant
configurations, such as encryption in use, encryption at rest and restricted ports.

Context and scope. Clouditor-Discovery is a microservice within the Clouditor3 tool, which has
been successfully used in the MEDINA project4 [11]. In EMERALD, the Clouditor-Discovery
component differs from MEDINA in the variety of discovered resources (e.g., Azure Key Vaults,
Functions, Web Apps) and the use of the Owl2proto5 tool (see D2.1 [4]). Additionally, it will be
further developed to support additional discoverers, such as OpenStack6. Other components of
the Clouditor used in EMERALD, such as the Orchestrator, Assessment and Evidence Store, are
described in Deliverable D3.1 [12].

The Clouditor-Discovery focuses on cloud resources, including Virtual Machines, Object Storage,
and Network Interfaces, from multiple CSPs like Azure. It achieves this by utilizing API calls to
collect runtime information, which is mapped to the EMERALD evidence format in accordance
with the CertGraph Ontology [4], and then stored in the Evidence Store component. With the
newly developed tool Owl2proto, as outlined in D2.1 [4] and the related paper [13], we can
seamlessly integrate the EMERALD evidence format through automatically generated proto files
from the Ontology directly into the Clouditor-Discovery component. This approach enhances
efficiency and significantly reduces maintenance efforts compared to the previous manual
process for creating and updating Ontology objects.

Motivation. A key goal of the EMERALD project is to assess the cloud service security, making
evidence from these services crucial for the assessment. To achieve a comprehensive result
across all layers of the cloud services, evidence extractor components are necessary to analyse
as many layers as possible. The Clouditor-Discovery serves as the key component for extracting
runtime configurations from cloud services, and a previous version has already been integrated
into the previous MEDINA architecture. In addition to this component, there are other evidence
extraction components for various other layers of the cloud services, including source,
organisational and AI model evidence extractors.

Requirements. The technical requirement for the Clouditor-Discovery component is provided in
Table 1. The Clouditor-Discovery component is currently implemented for the CSPs Azure, AWS,

3 https://github.com/clouditor/clouditor
4 https://medina-project.eu/
5 https://github.com/oxisto/owl2proto
6 https://www.openstack.org/

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://medina-project.eu/
https://github.com/oxisto/owl2proto
https://www.openstack.org/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 23

www.emerald-he.eu

and Kubernetes. Additionally, OpenStack7 and OpenNebula8 are planned for implementation in
future work.

Table 1. Requirement CLDISC.01 - Discovery of security features of infrastructure components

Field Description

Requirement ID CLDISC.01

Short title Discovery of security features of infrastructure components

Description The Clouditor-Discovery needs to discover security properties of
infrastructure components. The evidence with the security
properties is sent to the Evidence Store in the ontology format.

Status Work in Progress

Priority Must

Component Clouditor-Discovery

Source KPI

Type Technical

Related KR KR1_EXTRACT

Related KPI KPI 1.1

Validation acceptance
criteria

Validated if evidence arrives at the Evidence Store.

Progress Partially implemented- 40%

Milestone MS6: Integrated audit suite V2 (M30)

3.2 Technical description

In this section, we give the technical description of the runtime evidence collection component
Clouditor-Discovery.

3.2.1 Prototype architecture

The Clouditor-Discovery is a component of the tool Clouditor which employs a microservice
architecture allowing individual components to scale or to add new components, e.g., adding
several evidence collection components for new cloud services. The components are written in
Go9 and communicate among each other via the gRPC10 protocol.

For detailed interface specification, refer to the ./api/discovery folder within the Clouditor11
repository. The specification is written in accordance with the Protocol Buffer Version 3
Language Specification12. In addition, an auto-generated .yaml file that complies with the
OpenAPI description for REST APIs is available in the ./openapi/discovery folder. The
implemented API functions are shown in Table 2.

7 https://www.openstack.org/
8 https://opennebula.io/
9 https://go.dev/
10 https://grpc.io/
11 https://github.com/clouditor/clouditor/
12 https://protobuf.dev/programming-guides/proto3/

http://www.emerald-he.eu/
https://www.openstack.org/
https://opennebula.io/
https://go.dev/
https://grpc.io/
https://github.com/clouditor/clouditor/
https://protobuf.dev/programming-guides/proto3/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 23

www.emerald-he.eu

Table 2. Overview of the important API functions for the Clouditor-Discovery

Function Name Parameters Return type Description

Start optional
resource_group
(string)

optional
csaf_domain
(string)

successful
(bool)

Triggers the start of the discovery
process. Returns true if the component
started without errors.

The function includes two optional
parameters:

• With the parameter resource_group
only the specified resource group is
discovered.

• With the parameter csaf_domain
only the specified CSAF13 domain is
discovered.

3.2.1.1 Component description

The functionality of the Clouditor-Discovery component can be divided into 3 parts:

• Fetching security-relevant configurations of cloud resources

• Creation of evidence based on the EMERALD evidence format (CertGraph Ontology)

• Forwarding the evidence to the Clouditor-Evidence Store

In Clouditor-Discovery, the discovery package is located at the top level. Its primary role is to
communicate with the Evidence Store component in EMERALD. Initially, this service connects to
the Evidence Store, then activates different discoverers (e.g., a discoverer for Azure) and
continuously sends the gathered evidence through a gRPC channel to the Evidence Store.

For each CSP there is a separate sub-package (e.g., AWS, Azure, Kubernetes). Each package
contains a CSP-specific file which initializes configurations and credentials that all underlying
cloud services share. For the main resource types (e.g., compute, network, storage) there are
corresponding Go files that fetch the desired runtime information from the service via API calls.
According to the CertGraph Ontology, these properties are converted to the EMERALD evidence
format which is independent from the used CSP. By using the newly developed tool Owl2proto
the Clouditor-Discovery can directly use the automatically generated proto files without having
to manage the creation and updating of the Ontology objects. The properties available for
retrieval depend on the range of API calls offered by the respective CSP.

3.2.2 Technical specifications

The Clouditor-Discovery component is developed in Go (version 1.22) and consists of four
packages for the supported providers. The following list outlines the supported providers along
with their corresponding key modules:

• AWS: github.com/aws/aws-sdk-go-v2

• Azure: github.com/Azure/azure-sdk-for-go

• CSAF: github.com/csaf-poc/csaf_distribution/v3
• Kubernetes: k8s.io/api

A full list of used libraries can be found in the Clouditor GitHub repository14.

13 https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html
14 https://github.com/clouditor/clouditor/tree/main/service/discovery

http://www.emerald-he.eu/
https://docs.oasis-open.org/csaf/csaf/v2.0/os/csaf-v2.0-os.html
https://github.com/clouditor/clouditor/tree/main/service/discovery

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 23

www.emerald-he.eu

3.3 Delivery and usage

The following sections give a short overview of the delivery and usage of the prototype. Further
technical details can be found in the Clouditor GitHub Repository15.

3.3.1 Package information

Table 3 shows the structure of the important folders of Clouditor-Discovery and a brief
description of them.

Table 3. Overview of the package structure of Clouditor-Discovery.

Folder Description

api/discovery This folder contains the interface specification file
(.proto), the auto-generated Protobuf, gRPC files and
the code needed for the communication.
The .proto file defines the data structure and service
methods using Protocol Buffers (Protobuf), a
serialization format developed by Google for efficient
data exchange.

api/ontology This folder contains the auto-generated .proto file
based on the CertGraph Ontology. The .proto file is
generated by the Owl2proto tool, which converts
Ontology files to Protobuf. For further information
see D2.1 [4].

cli/commands/service/discovery This folder contains the Clouditor-Discovery CLI-based
source code files.

cmd/discovery This folder contains the main files for the Clouditor-
Discovery component.

openapi/discovery This folder contains the auto-generated OpenAPI
files.

server/commands/discovery This folder contains the CLI command to start the
Clouditor-Discovery server.

rest/ This folder contains the REST gateway
implementation.

service/discovery This folder contains the source code for the Clouditor-
Discovery component separated for each CSP: AWS,
Azure, Kubernetes and CSAF.

3.3.2 Installation

The installation instructions can be found in the Clouditor README15. If only the Clouditor-
Discovery component should be started, the build and start command must be adapted to

go build –o ./clouditor-discovery cmd/discovery/discovery.go and

./clouditor-discovery

Using the --help flag displays all available options as shown in Figure 2.

15 https://github.com/clouditor/clouditor

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 23

www.emerald-he.eu

Figure 2. Overview of the available options for Clouditor-Discovery

3.3.3 Instructions for use

Within the EMERALD project, the EMERALD UI is developed and used to access and manage the
workflow within the framework. The Clouditor-Discovery is not directly accessible through the
EMERALD UI; however, it can be attached to the Certification Target in the EMERALD UI.

Figure 3 shows the EMERALD UI view for selecting an evidence collector. Point 1-3 provide
additional information about the evidence extractor, while the button at point 4 allows the user
to add a new evidence collector. Point 5 displays the current status of the evidence extractor.

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 23

www.emerald-he.eu

Figure 3. EMERALD UI view for setting the evidence collectors for a Certification Target (D4.3 [14])

Figure 4 presents the subsequent view containing configuration information for the selected
evidence collector. The specifics of which information will be displayed and what functionalities
will be available for Clouditor-Discovery are yet to be defined.

Figure 4. EMERALD UI view for the available functionalities of an evidence collector (D4.3 [14])

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 23

www.emerald-he.eu

Further information regarding the EMERALD UI can be found in D4.3 [14].

Note that the installation of the evidence collectors cannot be performed via the EMERALD UI;
however, users can attach individual evidence collectors to a Certification Target.

The available user manual can be found in the Clouditor README16 and the CLI17.

3.3.4 Licensing information

The Clouditor is licensed under the open-source Apache-2.0 license including all sub-
components such as Clouditor-Discovery.

3.3.5 Download

The Clouditor source code can be found in the Clouditor GitHub repository18. The adapted
EMERALD component Clouditor-Discovery can be found in the public EMERALD GitLab
repository19.

3.4 Limitations and future work

This section describes the limitations and future work for the Clouditor-Discovery component.

The limitations are as follows:

• Clouditor-Discovery currently gathers data from Microsoft Azure, AWS, Kubernetes
environments and CSAF, but its functionality is restricted by the access permissions
granted to it in user management systems like Azure Active Directory. As a result, it can
only access resources that are visible to the assigned user.

• Changes to the cloud provider APIs may require updates to the component. For
example, if key security features, such as at rest encryption, are modified, their
integration into the EMERALD evidence must be adjusted accordingly.

• The evidence collection is restricted by the capabilities of the cloud provider APIs. If a
specific encryption feature is not supported by an API, capturing evidence for that
feature will not be possible.

• Clouditor-Discovery incorporates ontological terms into the evidence; therefore, the
constraints of the ontology must be considered:

o First, it is crucial that the ontology terms are accurately integrated into the
evidence; otherwise, the assessment component may yield incorrect metrics.

o Second, the ontology requires ongoing updates, and any modifications must be
reflected as well in the Clouditor-Discovery component.

o We have already developed a tool called owl2proto that converts the modelled
ontology into an appropriate Protobuf schema, which can be directly used in
various programming languages. However, the code in the Clouditor-Discovery
component still needs to be adjusted for more significant changes.

Future work will concentrate on implementing additional discoverers for security-related cloud
configurations for the CSPs OpenStack20and OpenNebula21, aiming to integrate the pilot
partners as well.

16 https://github.com/clouditor/clouditor
17 https://github.com/clouditor/clouditor#clouditor-cli
18 https://github.com/clouditor/clouditor/tree/main/service/discovery
19 https://git.code.tecnalia.com/emerald/public/components/discovery
20 https://www.openstack.org/
21 https://opennebula.io/

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://github.com/clouditor/clouditor#clouditor-cli
https://github.com/clouditor/clouditor/tree/main/service/discovery
https://git.code.tecnalia.com/emerald/public/components/discovery
https://www.openstack.org/
https://opennebula.io/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 23

www.emerald-he.eu

4 Codyze-Provenance

Codyze-Provenance is a new addition to the Codyze component in EMERALD. It adds runtime
evidence extraction capabilities to Codyze. It will create a verifiable trail of evidence from source
code to running cloud services and applications. This provenance creates a stronger link
between static analysis based on source evidence extractors and runtime evidence extractors.

4.1 Functional description

Overall purpose. Codyze-Provenance is intended as a realisation of the SLSA provenance
framework22 and the in-toto attestation framework23. The SLSA provenance framework specifies
measures to harden the security of supply chains for software artefacts. In addition to specifying
how each step in a software’s supply chain can be security hardened, it also links the different
stages to one another to support traceability and provenance. The in-toto attestation
framework provides the technical specification on how to create these links by generating
verifiable statements about what went into a stage, what happened in a stage and what resulted
from a stage. Codyze-Provenance creates provenance and attestations of software build
processes. This information allows to track and verify what data went into a build process, what
tools where executed and what artefacts were created. Thus, it becomes possible to trace the
origin of a running cloud service and application back to its specific source code and
corresponding build process.

Codyze-Provenance will provide the necessary tool and supporting components to realize SLSA
and in-toto in a CI/CD pipeline. Moreover, it will submit provenance and attestations to the
Evidence Store for further assessment.

Context and scope. Codyze-Provenance needs to be integrated into a CI/CD pipeline and
executed on every run of the CI/CD pipeline for a cloud service or application. It will adjust the
build process to support the generation of provenance and attestations. They are collected and
transformed into evidence within the EMERALD framework and submitted to the Evidence Store.

Motivation. One challenge during runtime is to verify the origin of a running cloud service or
application. Usually, it’s still possible to identify the container image or binary that is running.
However, it becomes increasingly difficult to provide details on how the service or application
was built, which built steps were executed, or what source code version was used in the build.
A complete software supply chain would describe all resources and process producing the final
deployable service or application. This provenance allows to verify requirements such as
mandatory security testing of applications or security checks for dependencies. Moreover, a
strong link between sources and build processes on the one hand and the runtime on the other
hand is created.

Requirements. Currently, Codyze-Provenance is a new addition in EMERALD and corresponding
requirements still need to be defined.

Innovation. Codyze-Provenance provides a user-friendly approach to integrate SLSA and in-toto
into software build processes for cloud services and applications. Collected evidence enhance
the ability to assess compliance with respect to compliance schemes.

22 https://slsa.dev/
23 https://in-toto.io/

http://www.emerald-he.eu/
https://slsa.dev/
https://in-toto.io/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 23

www.emerald-he.eu

4.2 Technical description

The following subsections outline the technical details of Codyze-Provenance as they are
envisioned.

4.2.1 Prototype architecture

Codyze-Provenance will consist of an application that collects provenance and attestation
reports defined by the SLSA and in-toto framework. These reports are transformed into evidence
for EMERALD and submitted to the Evidence Store. In addition, Codyze-Provenance will provide
templates and supporting files to create a CI/CD pipeline that supports the generation of
provenance and attestation reports.

At this stage, a more detailed prototype architecture cannot be presented because Codyze-
Provenance is still in its initial design phase.

4.2.1.1 Sub-components description

At this point of planning, no details on possible sub-components can be provided.

4.2.2 Technical specifications

Codyze-Provenance will be developed in the programming language Kotlin with a Java Virtual
Machine as backend. Moreover, it will provide templates and other supporting files to facilitate
an integration into CI/CD pipelines. To this end, the focus is on GitLab, which is also used as the
repository and CI/CD platform in EMERALD. Further details will be provided in the next iteration
of this report on runtime evidence extractors in D2.9 [5].

4.3 Delivery and usage

The following subsections detail the delivery and usage of Codyze-Provenance. The provided
information is currently work in progress and may change.

4.3.1 Package information

Codyze-Provenance will be delivered as an application bundled in an archive. The structure of
this package is summarized in Table 4.

Table 4. Overview of tentative package structure for Codyze-Provenance

Folder Description

bin/ Contains execution scripts for Windows and Linux/macOS

docs/ Contains detailed documentation

etc/ Contains sample configuration files and supporting files

lib/ Contains application and dependent libraries

LICENSE License text (Apache License, Version 2.0)

README.md Short documentation including short summary description,
installation and usage instructions, and further information

4.3.2 Installation

Installation instructions will be provided as part of a README and documentation for Codyze-
Provenance (cf. Table 4).

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 23

www.emerald-he.eu

4.3.3 Instructions for use

Instructions on how to use Codyze-Provenance will be provided as part of the released packages
(cf. folder ‘docs/’ and ‘README.md’ in Table 4). This information will also be available in the
public GitLab repository24 of EMERALD.

4.3.4 Licensing information

Codyze-Provenance will be licensed as open source under Apache License, Version 2.0. In
addition, it is ensured that third-party dependencies are compatible with the Apache License,
Version 2.0.

4.3.5 Download

Codyze-Provenance will be available from the public EMERALD GitLab repository24 hosted by
Tecnalia. The repository is going to host the source code, the documentation, binary artefacts
and supporting materials.

4.4 Limitations and future work

Codyze-Providence is a new component added to the EMERALD framework. It is currently in its
initial design phase and many of its details are yet to be specified. Hence, the goal is to have an
initial MVP as soon as possible.

24 https://git.code.tecnalia.com/emerald/public/components/codyze/codyze-provenance (WIP)

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/codyze/codyze-provenance

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 23

www.emerald-he.eu

5 Conclusions

The EMERALD project proposes a holistic approach to evidence collection, encompassing all
levels of the cloud service from the infrastructure layer (e.g., virtual resources) to the business
layer (e.g., policies and procedure), and the implementation layer (e.g., source code files).

This deliverable contains the technical report on the design, architecture, and current
implementation status of the runtime evidence extractor components of Task 2.5 ("Extraction
of evidence using runtime information"). The components adhere to the overall EMERALD
framework and align with the technical requirements gathered within the scope of WP1. The
deliverable outlines the relationship of the presented components with other components of
the EMERALD framework and details the internal structure, subcomponents, and technical
implementation information of each component -- as far as known at the current time.

The components introduced in this deliverable include the runtime evidence extraction
components Clouditor-Discovery and Codyze-Provenance. The Clouditor-Discovery component
was already used in MEDINA and has a working prototype that can be integrated into the
EMERALD framework. It has been enhanced to incorporate a variety of discovered resources
and the use of the newly developed Owl2proto tool for the automatic generation of the
necessary Ontology objects. Codyze-Provenance is a new addition to the Codyze component,
which will extract evidence from CI/CD pipelines and provide attestations and provenances for
software builds and artefacts. It’s currently in its initial design phase, with details yet to be
specified.

In the upcoming phases of the project, the Clouditor-Discovery and Codyze-Provenance
components will be further developed and integrated into the EMERALD framework. The next
and final iteration of this deliverable will provide the updates on these components in project
month 24 (D2.9 [5]).

http://www.emerald-he.eu/

DRAFT
D2.8 - Runtime Evidence Extractors – v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 23

www.emerald-he.eu

6 References

[1] EMERALD Consortium, “D2.2 Source Evidence Extractor – v1: Evidence extraction from
source code that can be integrated with the certification graph,” 2024.

[2] EMERALD Consortium, “D2.4 AMOE – v1: Evidence extraction from policy documents that
can be integrated with the certification graph,” 2024.

[3] EMERALD Consortium, “D2.6 ML model certification – v1: Security and privacy preserving
evidence that can be integrated with the certification graph,” 2024.

[4] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage: Description of a
uniform schema for storing and linking heterogenous data,” 2024.

[5] EMERALD Consortium, “D2.9 Runtime evidence extractor – v2: Evidence extraction from
runtime data that can be integrated with the certification graph,” 2025.

[6] EMERALD Consortium, “D2.10 Certification Graph– v1: Integration of the graph with
semantically linked and combined evidence,” 2025.

[7] EMERALD Consortium, “D2.11 Certification Graph– v2: Integration of the graph with
semantically linked and combined evidence,” 2026.

[8] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms - v1,” 2024.

[9] EMERALD Consortium, “EMERALD Glossary,” 2024.

[10] EMERALD Consortium, “D3.3 Evidence assessment and Certification–Implementation-v1,”
2024.

[11] MEDINA Consortium, “D3.6 Tools and techniques for collecting evidence of technical and
organisational measures-v3 (https://medina-project.eu/public-deliverables/),” 2023.

[12] EMERALD Consortium, “D3.1 Evidence Assessment and Certification - Concepts - v1,”
2024.

[13] C. Banse, A. Schneider and I. Kunz, “owl2proto: Enabling Semantic Processing in Modern
Cloud Micro-Services,” To appear in: 16th International Conference on Knowledge
Engineering and Ontology Development.

[14] EMERALD Consortium, “D4.3 User interaction and user experience concept - v1,” 2024.

http://www.emerald-he.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Runtime evidence extractors in the EMERALD architecture
	3 Clouditor-Discovery
	3.1 Functional description
	3.2 Technical description
	3.2.1 Prototype architecture
	3.2.1.1 Component description

	3.2.2 Technical specifications

	3.3 Delivery and usage
	3.3.1 Package information
	3.3.2 Installation
	3.3.3 Instructions for use
	3.3.4 Licensing information
	3.3.5 Download

	3.4 Limitations and future work

	4 Codyze-Provenance
	4.1 Functional description
	4.2 Technical description
	4.2.1 Prototype architecture
	4.2.1.1 Sub-components description

	4.2.2 Technical specifications

	4.3 Delivery and usage
	4.3.1 Package information
	4.3.2 Installation
	4.3.3 Instructions for use
	4.3.4 Licensing information
	4.3.5 Download

	4.4 Limitations and future work

	5 Conclusions
	6 References

