
DRAFT
Deliverable D3.3

Evidence assessment and Certification – Implementation
- v1

Editor(s): Nico Haas

Responsible Partner: Fraunhofer AISEC

Status-Version: Final – v1.0

Date: 31.10.2024

Type: OTHER (SW)

Distribution level: PU

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 76

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable:
D3.3 Evidence assessment and Certification –
Implementation- v1

Due Date of Delivery to the EC 31.10.2024

Workpackage responsible for the
Deliverable:

WP3 - Evidence assessment and Certification

Editor(s): Fraunhofer AISEC

Contributor(s):
Nico Haas, Angelika Schneider (FHG)
Cristina Regueiro, Iñaki Etxaniz (TECNALIA)
Marinella Petrocchi (CNR)

Reviewer(s):
Jordi Guijarro (ONS)
Cristina Martínez Martínez (TECNALIA)
Juncal Alonso Ibarra (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP4, WP5, WP6

Abstract: Interim versions of the implementation of the WP3

components.

Keyword List: Implementation, Evidence Assessment, Assessment
Evaluation, Certification, Control Metric Mapping,
Trustworthiness, Orchestration

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 76

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 05.09.2024 Added Table of Contents Nico Haas (FHG)

v0.2 14.10.2024 Added content Nico Haas, Angelika Schneider
(FHG)
Cristina Regueiro, Iñaki Etxaniz
(TECNALIA)
Marinella Petrocchi
(CNR)

v0.3 20.10.2024 QA Review Jordi Guijarro (ONS)

v0.4 24.10.2024 Address internal QA review
comments

Nico Haas (FHG)

v0.5 29.10.2024 Final review Cristina Martínez /Juncal Alonso
(TECNALIA)

v0.6 30.10.2024 Integration of the final
review

Nico Haas (FHG)

v1.0 31.10.2024 Submitted to the EC Cristina Martínez /Juncal Alonso
(TECNALIA)

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 76

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction ... 10

1.1 About this deliverable .. 10

1.2 Document structure ... 10

2 Evidence assessment and integration components in the EMERALD architecture 11

3 Clouditor-Orchestrator .. 13

3.1 Implementation ... 13

3.1.1 Functional description ... 13

3.1.2 Technical description ... 15

3.2 Delivery and usage ... 17

3.2.1 Package information .. 17

3.2.2 Installation ... 18

3.2.3 Instructions for use .. 18

3.2.4 Licensing information .. 19

3.2.5 Download .. 19

4 Clouditor-Assessment ... 20

4.1 Implementation ... 20

4.1.1 Functional description ... 20

4.1.2 Technical description ... 21

4.2 Delivery and usage ... 24

4.2.1 Package information .. 24

4.2.2 Installation ... 25

4.2.3 Instructions for use .. 25

4.2.4 Licensing information .. 25

4.2.5 Download .. 25

5 Clouditor-Evidence Store .. 26

5.1 Implementation ... 26

5.1.1 Functional description ... 26

5.1.2 Technical description ... 27

5.2 Delivery and usage ... 29

5.2.1 Package information .. 29

5.2.2 Installation ... 30

5.2.3 Instructions for use .. 30

5.2.4 Licensing information .. 31

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 76

www.emerald-he.eu

5.2.5 Download .. 31

6 Mapping Assistant for Regulations with Intelligence (MARI).. 32

6.1 Implementation ... 32

6.1.1 Functional description ... 32

6.1.2 Technical description ... 33

6.2 Delivery and usage ... 37

6.2.1 Package information .. 37

6.2.2 Installation ... 37

6.2.3 Instructions for use ... 38

6.2.4 Licensing information .. 40

6.2.5 Download .. 40

7 Clouditor-Evaluation.. 41

7.1 Implementation ... 41

7.1.1 Functional description ... 41

7.1.2 Technical description ... 42

7.2 Delivery and usage ... 43

7.2.1 Package information .. 43

7.2.2 Installation ... 44

7.2.3 Instructions for use .. 44

7.2.4 Licensing information .. 44

7.2.5 Download .. 44

8 Repository of Controls and Metrics (RCM) ... 45

8.1 Implementation ... 45

8.1.1 Functional description ... 45

8.1.2 Technical description ... 47

8.2 Delivery and usage ... 50

8.2.1 Package information .. 50

8.2.2 Installation ... 53

8.2.3 Instructions for use .. 55

8.2.4 Licensing information .. 58

8.2.5 Download .. 58

9 Trustworthiness System .. 59

9.1 Implementation ... 59

9.1.1 Functional description ... 59

9.1.2 Technical description ... 61

9.2 Delivery and usage ... 68

9.2.1 Package information .. 68

9.2.2 Installation ... 68

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 76

www.emerald-he.eu

9.2.3 Instructions for use .. 69

9.2.4 Licensing information .. 71

9.2.5 Download .. 71

10 Conclusions .. 72

11 References ... 73

APPENDIX A: Examination of Graph DB Engines ... 75

 List of tables

TABLE 1. ORCHESTRATOR FUNCTIONAL REQUIREMENTS. .. 14
TABLE 2. PACKAGE STRUCTURE OF CLOUDITOR WITH ORCHESTRATOR-RELEVANT PARTS 17
TABLE 3. PACKAGE STRUCTURE OF THE ORCHESTRATOR USED IN EMERALD ... 17
TABLE 4. ASSESSMENT FUNCTIONAL REQUIREMENTS ... 20
TABLE 5. ASSESSMENT PACKAGE STRUCTURE .. 24
TABLE 6. ASSESSMENT PACKAGE STRUCTURE IN THE EMERALD FRAMEWORK ... 25
TABLE 7. EVIDENCE STORE FUNCTIONAL REQUIREMENTS .. 26
TABLE 8. EVIDENCE STORE RELEVANT PACKAGE STRUCTURE .. 29
TABLE 9. EVIDENCE STORE PACKAGE STRUCTURE IN EMERALD FRAMEWORK ... 30
TABLE 10. MARI FUNCTIONAL REQUIREMENTS. ... 32
TABLE 11. MARI PACKAGE INFORMATION ... 37
TABLE 12. EVALUATION FUNCTIONAL REQUIREMENTS ... 41
TABLE 13. EVALUATION RELEVANT PACKAGE STRUCTURE .. 43
TABLE 14. EVALUATION PACKAGE STRUCTURE IN THE EMERALD FRAMEWORK ... 44
TABLE 15. RCM FUNCTIONAL REQUIREMENTS ... 46
TABLE 16. TWS FUNCTIONAL REQUIREMENTS ... 59

List of figures

FIGURE 1. OVERVIEW OF THE EMERALD COMPONENTS WITH SPECIAL FOCUS ON EVIDENCE ASSESSMENT AND

CERTIFICATION COMPONENTS .. 12
FIGURE 2. ROLE OF THE ORCHESTRATOR IN THE EMERALD FRAMEWORK ... 15
FIGURE 3. THE PROTOTYPE ARCHITECTURE OF THE ORCHESTRATOR .. 16
FIGURE 4. VIEW OF AN AUDIT SCOPE FROM D4.3 [11] .. 18
FIGURE 5. ROLE OF THE ASSESSMENT IN THE EMERALD FRAMEWORK ... 21
FIGURE 6. THE PROTOTYPE ARCHITECTURE OF THE ASSESSMENT .. 22
FIGURE 7. EXAMPLE OF A REGO POLICY [13] .. 23
FIGURE 8. EXAMPLE OF A REGO CONFIGURATION [13] ... 23
FIGURE 9. EXAMPLE OF AN EVIDENCE [13] ... 24
FIGURE 10. ROLE OF THE EVIDENCE STORE IN THE EMERALD FRAMEWORK ... 27
FIGURE 11. THE PROTOTYPE ARCHITECTURE OF THE EVIDENCE STORE .. 28
FIGURE 12. DIGITAL MOCK-UP FOR A RESOURCE GRAPH (D4.3 [11]) ... 31
FIGURE 13. FITTING MARI WITH OTHER COMPONENTS IN EMERALD ARCHITECTURE 33
FIGURE 14. OVERVIEW OF THE MARI ARCHITECTURE AND INTERACTIONS ... 34
FIGURE 15. DETAILED ARCHITECTURE OF MARI COMPONENT ... 35
FIGURE 16. OUTPUT FILE PREVIEW OF THE ASSOCIATIONS BETWEEN CONTROLS AND METRICS 38

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 76

www.emerald-he.eu

FIGURE 17. MARI - OVERVIEW OF CONTROLS AND MAPPED METRICS (D4.3 [11]) 39
FIGURE 18. MARI - MAPPING CONTROLS FROM EUCS TO BSI C5 (D4.3 [11]) .. 39
FIGURE 19. ROLE OF THE EVALUATION IN THE EMERALD FRAMEWORK ... 42
FIGURE 20. THE PROTOTYPE ARCHITECTURE OF THE EVALUATION COMPONENT ... 42
FIGURE 21. FITTING OF THE RCM WITH OTHER COMPONENTS IN THE EMERALD ARCHITECTURE 47
FIGURE 22. ARCHITECTURE OF THE REPOSITORY OF CONTROLS AND METRICS (RCM) 48
FIGURE 23. REPOSITORY COMPONENTS (GREEN BOXES) AND AUXILIARY ELEMENTS 51
FIGURE 24. HOME PAGE OF THE EMERALD FRAMEWORK (D4.3 [11]) ... 55
FIGURE 25. LIST OF SCHEMAS PAGE (D4.3 [11]) .. 56
FIGURE 26. UPLOAD NEW SCHEME PAGE (D4.3 [11]) ... 56
FIGURE 27. BROWSE SCHEME (EUCS CATEGORIES) (D4.3 [11]) ... 57
FIGURE 28. BROWSE SUB-CATEGORIES OF THE EUCS SCHEME (D4.3 [11])... 57
FIGURE 29. CONTROLS OF AN EUCS SCHEME CATEGORY (D4.3 [11]) .. 58
FIGURE 30. FITTING OF THE TWS WITH OTHER COMPONENTS IN EMERALD ARCHITECTURE 60
FIGURE 31. TWS ARCHITECTURE .. 61
FIGURE 32. TWS DATA MODEL ... 64
FIGURE 33. TWS BLOCKCHAIN VIEWER ARCHITECTURE .. 66
FIGURE 34. TWS BLOCKCHAIN VIEWER DASHBOARD FOR ADMINISTRATORS .. 67
FIGURE 35. TWS BLOCKCHAIN VIEWER DASHBOARD FOR ASSESSMENT COMPONENTS 68
FIGURE 36. TWS SET-UP (D4.3 [11]) .. 70
FIGURE 37. CORRECT INTEGRITY VERIFICATION ... 70
FIGURE 38. INCORRECT INTEGRITY VERIFICATION .. 70
FIGURE 39. INTEGRITY VERIFICATION DETAILS (D4.3 [11]) ... 71

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 76

www.emerald-he.eu

Terms and Abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

API Application Programming Interface

CaaS Certification-as-a-Service

CI/CD Continuous Integration /Continuous Development

CLI Command Line Interface

CRUD Create, Read, Update and Delete

CSV Comma-Separated Values

DB Database

DoA Description of Action

EAP Early Adopters Programme

EBSI European Blockchain Service Infrastructure

EC European Blockchain Services Infrastructure

EUCS European Cybersecurity Certification Scheme for Cloud Services

EVM Ethereum Virtual Machine

gRPC Google Remote Procedure Call

GUI Graphical User Interface

JPA Java Persistence API

JWT Java Web Token

KPI Key Performance Indicator

KR Key Result

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

GUI Graphical User Interface

IP Internet Protocol

MARI Mapping Assistant for Regulations with Intelligence

NDCG Normalised Discounted Cumulative Gain

MVC Model, View, Controller

NLP Natural Language Processing

OPA Open Policy Agent

OSCAL Open Security Controls Assessment Language

OSS Open-Source Software

Protobuf Protocol Buffers

RBAC Role-Based Access Control

RCM Repository of Controls and Metrics

Rego Policy query language of OPA

REST Representational State Transfer

SDLC Software Development Life Cycle

SQL Structured Query Language

SSI Self-Sovereign Identity System

TWS Trustworthiness System

UI User Interface

URL Uniform Resource Locator

WSGI Web Server Gateway Interface

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 76

www.emerald-he.eu

Executive Summary

This deliverable, the first version of Evidence Assessment and Certification – Implementation,
provides an initial report on the implementation details of the WP3 components within the
EMERALD framework. The goal of WP3 is to serve as the central integration point for evidence
collection and knowledge extraction tools, contributing to the development of a Certification-
as-a-Service (CaaS) framework for continuous certification of harmonized cybersecurity
schemes by assessing the provided evidence to make appropriate certificate decisions. In
particular, WP3 and its deliverables address the key results CERTGRAPH (KR2) by implementing
the evidence store as a graph database, OPTIMA (KR3) by providing the optimal set of metrics
for a given control of a security scheme, MULTICERT (KR4) by providing certification decision for
multiple schemes, and INTEROP (KR7) by providing an interoperability layer for trustworthy
systems, assessment results, and catalogue data. These key results are measured using the key
performance indicators (KPIs) defined in the Description of Action (DoA) [1], which are outlined
below.

WP3 enables continuous certification decisions based on a constantly changing certification
target. This deliverable informs about the development and implementation of WP3
components, including the Clouditor-Orchestrator, Clouditor-Assessment, Clouditor-Evidence
Store, Clouditor-Evaluation, Mapping Assistant for Regulations with Intelligence (MARI),
Repository of Controls and Metrics (RCM), and Trustworthiness System (TWS).

We first demonstrate the place of the WP3 components in the EMERALD framework. To do this,
we show an overview of all components, in which both the languages used, and the connection
protocols are visualized. Finally, the main part of this document delves into each component's
implementation, delivery, usage, and associated documentation.

Providing certificate decisions by meeting the ambitious objectives set in EMERALD requires
various tools to work cohesively together: assessing evidence coming from the WP2 evidence
collection tools (KPI 4.1); storing evidence in a graph-based database to enable sophisticated
assessment of evidence distributed across various layers of a cloud service (KPI 2.1); the RCM
component to store catalogues and metrics in an interoperable way (KPIs 7.1 and 7.2), the MARI
component to provide metrics that are suitable for a given (set of) security schemes (KPIs 3.1
and 3.2), and the TWS component to improve the auditor's trust in the evidence (KPIs 7.1 and
7.2). To implement these components in a manner that ensures cohesive operation, they must
be carefully designed and integrated. The main contributions of this deliverable to the project
are therefore to focus on the implementation details of each WP3 component, ensuring that
they are effectively realized within the whole framework.

The structure of the WP3 deliverables closely resembles the software development life cycle
(SDLC) approach. After the first WP3 deliverable (D3.1 “Evidence Assessment and Certification
– Concepts-v1” M09 [2]), this deliverable describes the initial implementation (D3.3 “Evidence
Assessment and Certification – Implementation-v1” M12) and outlines the next steps, which
include further integration (D3.5 [3]). This cycle is then repeated with the final versions of
concepts (D3.2 [4]), implementation (D3.4 [5]), and integration (D3.6 [6]), ensuring continuous
improvement and refinement of the components (also considering changes occurring in other
work packages).

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 76

www.emerald-he.eu

1 Introduction

1.1 About this deliverable

The EMERALD project aims to pave the way towards Certification-as-a-Service (CaaS) for
continuous certification of harmonized cybersecurity schemes, such as the EUCS [7]. It addresses
the critical need for enhanced transparency, accountability, and trustworthiness in European
cloud services. The project focuses on developing robust evidence management components
and providing a proof of concept for AI certification schemes.

Within this context, WP3 plays a pivotal role by serving as the central integration point for
evidence collection and knowledge extraction tools developed in WP2, while also acting as the
interface for auditors and pilots who can interact with it via the UI. The main goal of WP3 is to
contribute to the CaaS framework by assessing the provided evidence to make appropriate
certification decisions.

This deliverable serves as the initial report on the implementation details of the WP3
components within the EMERALD project. The main goal is to document the implementation of
each WP3 component, providing detailed functional and technical descriptions, delivery and
usage instructions, and associated documentation.

In summary, this document aims to provide a thorough understanding of the initial
implementation, setting groundwork for the upcoming integration within the EMERALD
framework.

1.2 Document structure

This document is structured to provide a comprehensive overview of the WP3 components’
implementation. The rest of this document is structured as follows:

Section 2 presents an overview of the WP3 Architecture. It offers a concise look at the various
components of WP3, focusing on the technical details of each component (e.g. which
programming language it is written in) and the communication between them (e.g. used
protocols such as gRPC).

Sections 3 to 9 contain the main contribution of the document. Each section delves into each
component's implementation as well as its delivery and usage. The implementation covers the
functional description (overall purpose of the component), technical description, prototype
architecture (diagram and description), (sub) components description and technical
specifications. Delivery and usage comprise package information (structure of the delivered
package such as folders and files), installation instructions, instructions for use, licensing
information and information about the download of the software.

Finally, Section 10 reports the conclusions.

In the APPENDIX A: Examination of Graph DB Engines, further information on the examination
of Graph DB Engines is provided.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 76

www.emerald-he.eu

2 Evidence assessment and integration components in the
EMERALD architecture

Before we look at the connection of the WP3 components to each other and to other EMERALD
components, we give a brief description of each component (for more information, see D3.1
[2]):

• Clouditor-Orchestrator (described in Section 3) is responsible for managing the overall
certification workflow and coordinating interactions between various components
within the EMERALD framework.

• Clouditor-Assessment (described in Section 4) assesses evidence based on predefined
metrics and generates assessment results that inform compliance decisions.

• Clouditor-Evidence Store (described in Section 5) securely stores and manages evidence
collected from various sources, organizing it within a graph-based database.

• Mapping Assistant for Regulations with Intelligence (MARI) (described in Section 6)
maps security controls of different security schemes to suitable metrics and controls
from different schemes, optimizing the compliance assessment process.

• Clouditor-Evaluation (described in Section 7) aggregates assessment results to
determine the compliance of cloud services with specific security controls.

• Repository of Controls and Metrics (RCM) (described in Section 8) serves as a smart
catalogue of metrics and controls, facilitating the reuse and composition of elements
within the certification process.

• Trustworthiness System (TWS) (described in section 9) enhances the integrity and
transparency of the certification process by ensuring the trustworthiness of evidence
and assessment results through blockchain technology.

Figure 1 illustrates the connections of WP3 components, including the protocols used for
transporting information as well as the programming languages for the respective (sub)
components. Besides, the figure represents the relationship of the Evidence assessment and
integration components developed in the context of WP3 and the other components in
EMERALD.

The components Clouditor-Orchestrator, Clouditor-Assessment, Clouditor-Evidence Store and
Clouditor-Evaluation are part of the Clouditor toolbox1. Serving as a reference implementation
for research, the Clouditor is developed to provide continuous cloud assurance, i.e. to evaluate
cloud-based applications. For this purpose, it leverages the usage of semantic evidence, paving
the way towards “continuous certification which is scheme- and vendor-independent” [8]. All
Clouditor components are developed with the programming language Go2. Go is a statically
typed, compiled programming language designed for simplicity, efficiency, and reliability. It
features built-in support for concurrent programming, making it highly suitable for developing
scalable and high-performance applications. We use Go in the Clouditor because of its efficient
concurrency model, ease of deployment, and strong performance characteristics. Additionally,
its robust standard library and tools for building services align well with the microservice
architecture of the EMERALD framework. The Clouditor is designed and implemented in such a
way that it can be easily imported as a library for further development, e.g. in EMERALD.

1 https://github.com/clouditor/clouditor
2 https://go.dev/

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://go.dev/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 76

www.emerald-he.eu

 Figure 1. Overview of the EMERALD components with special focus on Evidence Assessment and
Certification components

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 76

www.emerald-he.eu

3 Clouditor-Orchestrator

The Clouditor-Orchestrator (in the following Orchestrator) is the central component
orchestrating the certification process and connecting multiple components of the EMERALD
framework. This component also handles the final certification decision, determining whether a
cloud service is compliant with a given security scheme or not.

3.1 Implementation

The Orchestrator component is based on the respective microservice of Clouditor and was
already used in MEDINA3 to manage and provide an interface for its components [9]. It will be
further developed by leveraging the functionality of the Life-Cycle Manager component in
MEDINA to provide the final certificate decision [10].

3.1.1 Functional description

The Orchestrator is responsible for orchestrating the certification process and connecting
various components. Its primary role is to manage the workflow of the certification process,
ensuring that all necessary steps are executed in the correct sequence. The Orchestrator also
interacts with other components, such as the Clouditor-Assessment and Clouditor-Evidence
Store, to gather and process evidence required for certification decisions.

The motivation behind the Orchestrator is to provide a unified and efficient framework for
managing the certification process of cloud services. By leveraging the functionalities of the Life-
Cycle Manager component used in MEDINA, the Orchestrator aims to automate and streamline
the certification workflow, reducing the complexity and time required for certification. This
ensures that cloud services can be certified in a timely and consistent manner.

The Orchestrator introduces several key innovations to the certification process within the
EMERALD framework:

1. Integration with Multiple Components: The Orchestrator effectively connects various
components, such as the Clouditor-Assessment, Clouditor-Evidence Store, and Mapping
Assistant for Regulations with Intelligence (MARI), facilitating seamless data flow and
interaction.

2. Automated Certification Decisions: By leveraging the functionality of the Life-Cycle
Manager component from MEDINA, the Orchestrator automates the final certification
decision process, determining whether a cloud service is compliant with a security
catalogue.

3. Enhanced Workflow Management: The Orchestrator manages the entire certification
workflow, ensuring that all necessary steps are executed in the correct sequence and
that evidence is collected and processed efficiently.

4. Scalability and Flexibility: Built using a microservice architecture, the Orchestrator can
be easily scaled and adapted to handle varying workloads and integrate new
components as needed.

Table 1 outlines the functional requirements proposed by the current version of the
Orchestrator, as documented in D3.1 [2], and updates the status of their implementation in the
current prototype in M12.

3 https://medina-project.eu/

http://www.emerald-he.eu/
https://medina-project.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 76

www.emerald-he.eu

Table 1. Orchestrator functional requirements.

Req. ID Description Priority Milestone Progress

ORCH.01 Final certificate decision: Since we do not have a
dedicated life-cycle manager component in EMERALD,
the Orchestrator must take care of the final certificate
decision. The decision is based on the input of the
Evaluation component providing the Orchestrator
with an evaluation result for each control.

Must MS5
(M24)

10%

ORCH.02 REST API Gateway for UI: The Orchestrator should
provide a REST API gateway for the UI that serves a
central API endpoint for all information needed from
the Orchestrator, Assessment, Evaluation and other
Clouditor components.

Must MS2
(M12)

100%

ORCH.03 Role Based Access Control: Since the UI wants to
selectively disclose information to users and/or roles,
we need a RBAC mechanism in our API endpoints,
mainly in the Orchestrator.

Must MS5
(M24)

25%

ORCH.04 Manage Tools via API: We need to manage external

tools, such as evidence extractors in the Orchestrator.

Must MS3
(M18)

0%

ORCH.05 Provide an API for audit workflow: We want to assign
people to controls within an audit instance that have
a particular task.

Must MS6
(M30)

0%

3.1.1.1 Fitting into overall EMERALD Architecture

The Orchestrator plays a crucial role within the EMERALD framework by coordinating the
interactions between various components involved in the certification process. It acts as the
central hub, managing the flow of information and ensuring that each component performs its
designated tasks in a cohesive manner.

The Orchestrator interfaces with the Clouditor-Assessment component to receive assessment
results and with the Clouditor-Evidence Store to retrieve necessary evidence. It also interacts
with the Repository of Controls and Metrics (RCM) to access relevant controls and metrics.
Additionally, the Orchestrator communicates with the Trustworthiness System (TWS) to ensure
the integrity and trustworthiness of the evidence and assessment results. To evaluate if a
certification target is compliant with certain controls of a security scheme, the Orchestrator
interacts with the Clouditor-Evaluation. For this purpose it sends the respective assessment
results to the Evaluation component and in turn receives the evaluation results for the controls.
Based on these evaluation results, the Orchestrator then makes the final certificate decision for
a given certification target. Finally, the Orchestrator communicates with AMOE to send the
target values for the metric configuration.

As a central component, the Orchestrator is connected to nearly all other components within
the EMERALD framework. This extensive connectivity ensures that it can effectively manage and
coordinate the certification process, as illustrated in Figure 2.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 76

www.emerald-he.eu

Figure 2. Role of the Orchestrator in the EMERALD framework

3.1.2 Technical description

The technical description of the Orchestrator provides an in-depth look at its architecture,
components, and technical specifications. This section outlines how the Orchestrator is
structured, as well as the specific technologies and methods used in its implementation. The
following subsections detail the prototype architecture, components, and technical
specifications of the Orchestrator.

3.1.2.1 Prototype architecture

The Orchestrator is designed as a microservice within the Clouditor tool, leveraging a modular
architecture to ensure scalability and flexibility. The architecture of the Orchestrator includes
several key elements:

• API Gateway: The Orchestrator provides REST and gRPC endpoints for interaction with
other components and external systems. This gateway facilitates the communication
between the Orchestrator and other parts of the EMERALD framework, enabling
efficient data exchange.

• Orchestration Module: This module is responsible for managing the overall certification
workflow, ensuring that each step in the process is executed in the correct sequence. It
coordinates with other components such as the Clouditor-Assessment and Clouditor-
Evidence Store to gather and process the necessary evidence.

• Compliance Module: This module evaluates the assessment results against predefined
metrics and controls to make certification decisions. It ensures that all necessary
evidence has been collected and assessed before making a final certification decision.

While the Orchestrator is not further divided into subcomponents, it is using different files
representing different functionalities. Figure 3 illustrates the high-level architecture of the
Orchestrator, including the REST-Gateway and Authorization which are available to every
Clouditor service as well as the internal components (the different functionalities starting with
Assessment Results from the top to the Compliance module at the bottom).

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 76

www.emerald-he.eu

Figure 3. The prototype architecture of the Orchestrator

3.1.2.1.1 Components description

The architecture of the Orchestrator includes several key elements and functionalities:

• Clouditor's REST Gateway and Authorization: The Orchestrator uses Clouditor's REST
Gateway to allow REST calls from components not able to communicate via gRPC. This
ensures compatibility and flexibility in communication protocols. Additionally, the
Orchestrator leverages Clouditor's Authorization implementation to provide state-of-
the-art authentication mechanisms, such as OAuth2, which is used in EMERALD.

• Functionalities:
a. Assessment Results: Responsible for handling assessment results, e.g. coming

from the Assessment component. It provides CRUD (Create, Read, Update,
Delete) operations for assessment results.

b. Audit Scope: Manages CRUD operations for audit scopes (previously known as
target of evaluation), which define a (part of a) cloud service and the (parts of)
the respective certification schemes to check against.

c. Catalogues: Handles general CRUD operations for catalogues as well as more
specific ones, such as retrieving a specific control of a catalogue. In the context
of EMERALD, this functionality is mainly used to get catalogues from the
Repository of Controls and Metrics (RCM).

d. Certificates: Manages CRUD operations for certificates against which a
certification target is checked, including state history. It also offers an operation
to list all current certifications without state history.

e. Certification Target: Manages CRUD operations for certification targets
(previously known as cloud services).

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 76

www.emerald-he.eu

f. Metrics: Manages CRUD operations for metrics (and metric configurations),
such as loading metrics locally or via network. In the context of EMERALD,
metrics are received from the RCM.

g. Compliance: Based on evaluation results provided by the Clouditor-Evaluation,
this module provides the final certificate decision.

h. Orchestrator: The main class that can instantiate an Orchestrator instance
capable of running the operations described above.

3.1.2.2 Technical specifications

The Clouditor-Orchestrator is implemented using Go, providing efficient concurrency support
and ease of deployment in microservice architectures. The main communication protocols used
are REST and gRPC, ensuring high-performance interaction with other components.

• Programming Language: Go

• Communication Protocols: REST API and gRPC (including Protobuf)

• Postgres database for storing Assessment Results and Evaluation Results

• Security: OAuth and Role-Based Access

3.2 Delivery and usage

This section describes the information needed for the installation and use of the Orchestrator.
Besides, it also details the licensing information and related packages and repositories.

3.2.1 Package information

Table 2 shows the Orchestrator-relevant package structure in the Clouditor repository and Table
3 shows the package structure in the EMERALD framework, where the Orchestrator parts of the
Clouditor tool are used as dependencies.

Table 2. Package structure of Clouditor with Orchestrator-relevant parts

Folder Description

api/orchestrator/

This folder contains code needed for the
communication with this component. It mainly
consists of auto-generated Protobuf and gRPC
files.

cli/commands/service/orchestrator This folder contains the Clouditor CLI based
source code files

cmd/orchestrator/ This folder contains the main file.

openapi/orchestrator/ This folder contains the auto-generated OpenAPI
files for the Orchestrator.

rest/ This folder contains the REST gateway
implementation.

service/orchestrator/ This folder contains the source code for the
Orchestrator microservice.

Table 3. Package structure of the Orchestrator used in EMERALD

Folder Description

modules/ This folder contains the source code for the EMERALD-specific
parts of the Orchestrator, e.g. the Compliance module for
making certificate decisions.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 76

www.emerald-he.eu

cmd/orchestrator This folder contains the main file.

./ (Root directory) Beside the folders mentioned above, the root directory also
contains a workflow file needed for continuous integration
and deployment (.gitlab-ci.yml), a README file, a Go file
for launching the EMERALD Orchestrator and Go module files
for handling dependencies (go.mod and go.sum).

3.2.2 Installation

In EMERALD, we use GitLab’s CI/CD pipeline for continuous integration and deployment. For this
purpose, there is a workflow file at each components root level (.gitlab-ci.yml).

For running the Orchestrator locally, there is a docker file (“Dockerfile”) located at the
components root level. For building and running the Orchestrator, use the following commands:

docker build -t clouditor-orchestrator .
docker run -d -p 8080:8080 clouditor-orchestrator

3.2.3 Instructions for use

Within the EMERALD project, the EMERALD UI is used to access and manage the workflow in the
framework. In the case of the Orchestrator, the UI interacts with it by using the components API
endpoints, e.g. to list certification targets.

Currently, the EMERALD UI is work in progress, but some clickable mock ups have been designed
in D4.3 [11], e.g. the audit scope overview in Figure 4.

Figure 4. View of an audit scope from D4.3 [11]

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 76

www.emerald-he.eu

3.2.4 Licensing information

The Clouditor-Orchestrator is offered under Apache 2.0 license. The license files and more
detailed information can be found in the GitLab repository.

3.2.5 Download

The Clouditor source code can be found in the Clouditor GitHub repository4. The development
of the Orchestrator can be found in the public EMERALD GitLab repository5.

4 https://github.com/clouditor/clouditor
5 https://git.code.tecnalia.com/emerald/public/components/orchestrator

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://git.code.tecnalia.com/emerald/public/components/orchestrator

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 76

www.emerald-he.eu

4 Clouditor-Assessment

The Clouditor-Assessment (in the following Assessment) component is responsible for evaluating
evidence based on predefined metrics within the EMERALD framework. In the following, we
provide information about the implementation as well as the delivery and usage of this
component.

4.1 Implementation

The Assessment component is based on the respective microservice of Clouditor and was already
used in MEDINA [9]. It will be further developed in EMERALD to handle multiple pieces of
evidence that reflect resources on different layers.

4.1.1 Functional description

The Assessment is responsible for assessing evidence based on predefined metrics within the
EMERALD framework. It processes the collected evidence to determine compliance with specific
security requirements. The assessment results generated by this component are inspired by but
decoupled from the actual controls of security catalogues. These results are then used by the
Clouditor-Evaluation component (described in Section 7) to determine compliance with the
relevant controls.

The Assessment evaluates evidence collected from various sources, ensuring that the evidence
meets the predefined metrics necessary for compliance. This component operates within the
broader context of the EMERALD framework, where it plays a critical role in the certification
process.

The motivation behind the Assessment is to automate the evaluation of compliance, reducing
manual effort and increasing the accuracy of assessments. By providing a systematic approach
to evidence assessment, it ensures consistent and reliable results.

The main innovations of the Assessment component include:

• Automated Assessment: Utilizes predefined metrics to automatically evaluate evidence,
streamlining the certification process.

• Scalability: Capable of handling multiple pieces of evidence that reflect resources on
different layers, providing a comprehensive assessment.

• Interoperability: Integrates seamlessly with other components of the EMERALD
framework, ensuring efficient data exchange and processing.

Table 4 outlines the functional requirements satisfied by the current version of the Assessment,
as documented in D3.1 [2], and updates the status of their implementation in the current
prototype in M12.

Table 4. Assessment functional requirements

Req. ID Description Priority Milestone Progress

ASSESS.01 Assessment based on evidence: The assessment
should assess evidence based on the knowledge
graph.

Must MS6
(M30)

15%

ASSESS.02 Assessment rules for 80% of the defined metrics:
Assessment rules must exist for 80% of the metrics
defined in KP4.1.

Must MS6
(M30)

15%

ASSESS.03 Display cause of assessment result: We want to
know why an assessment result fails or passes.

Must MS6
(M30)

0%

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 76

www.emerald-he.eu

4.1.1.1 Fitting into overall EMERALD Architecture

The connection of the Assessment to other components in the EMERALD framework can be seen
in Figure 5. Initially, the Assessment receives the metrics which include the rules for assessing
evidence. These metrics originate from the RCM but are transferred via the central
Orchestration component.

Evidence collected from the various collectors is sent to and stored in the Evidence Store. The
Evidence Store then forwards this evidence to the Assessment component. Here the evidence
(single ones or combined around different layers) is assessed using the metrics the Assessment
received in the beginning.

Then both the evidence as well as the assessment results are sent to the TWS to ensure integrity
and, therefore, enhance the trustworthiness of the whole process. The assessment results are
also sent to the Orchestrator which first stores them in a database. The Orchestrator can then
use the respective assessment results to evaluate these (using the Evaluation component) and,
in the end, to make the final certificate decision.

Figure 5. Role of the Assessment in the EMERALD framework

4.1.2 Technical description

The technical description of the Assessment provides an in-depth look at its architecture,
components, and technical specifications. This section outlines the structure of the Assessment
component, as well as the specific technologies and methods used in its implementation. The
following subsections detail the prototype architecture, components, and technical
specifications.

4.1.2.1 Prototype architecture

The architecture for the Assessment component is shown in Figure 6. It comprises the core
component (assessment.go in the code structure) which is mainly responsible for providing
and handling API requests as well as for instantiating an assessment component. For assessing
incoming evidence, the Assessment leverages the Clouditor-internal library Policies which
applies predefined rules to get an assessment result.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 76

www.emerald-he.eu

Figure 6. The prototype architecture of the Assessment

4.1.2.1.1 Components description

The Assessment is mainly composed by the following components:

• Clouditor's REST Gateway and Authorization: The Assessment uses Clouditor's REST
Gateway to allow REST calls for components not able to communicate via gRPC. This
ensures compatibility and flexibility in communication protocols. Additionally, the
Orchestrator leverages Clouditor's Authorization implementation to provide state-of-
the-art authentication mechanisms, such as OAuth2, which is used in EMERALD.

• The Core (assessment.go):
o Function NewService for instantiating a new assessment.
o Metric-corresponding methods (e.g. MetricConfiguration) that implements the

MetricsSource interface to define where metric information is coming from. In
the case of EMERALD, information about metrics is obtained from the
Orchestrator (but originated from the RCM).

o API-corresponding functions that implement the assessment service interface
(for all relevant API endpoints see below), e.g. AssessEvidences that opens a
stream to receive multiple instances in one connection. When assessment
results are created, they are forwarded to the Orchestrator component and,
together with evidence to the TWS to ensure that the data is not tampered with
in the future.

• Policies:
o Used by the Core (in AssessEvidence and AssessEvidence) to assess incoming

evidence with pre-defined metrics (i.e. rules). The assessment initially loads the
metrics from the Orchestrator.

o Currently, we use the OPA policy engine to assess the evidence via the metrics
that are written in the OPA policy language Rego. Since we are planning to move
to a graph-based evidence structure (see Evidence Store in Section 5), we will
also consider alternative approaches that may fit better the requirement to
assess multiple evidence located in different layers (layers are, e.g., code,
configuration and documents). Note that the evidence structure is defined by
the ontology [12]. The Rego rules must be aligned with the ontology to work
correctly. A concise example is given below.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 76

www.emerald-he.eu

In the following, all API endpoints are listed accompanied by a short explanation (all API
endpoints are defined in the Clouditor repository6):

• AssessEvidence: Assesses the pieces of evidence included in the AssessEvidenceRequest.
This endpoint is exposed via gRPC as well as REST.

• AssessEvidences: Assesses stream of evidence by opening a continued connection with
the component that calls this endpoint. Because the connecting component does not
have to open a new connection for each single evidence, multiple evidence can be
assessed much faster. In particular. in the case of EMERALD, this can result in a major
boost because complex distributed systems can lead to thousands of pieces of evidence
that have to be assessed (e.g. when checking configurations of cloud systems). This
endpoint is only served via gRPC and not at REST.

Example for the usage of Rego

Generally, using Rego comprises an input (here: evidence), a rule (policy) that is applied on the
input, and a configuration to set custom values for the rule7. In the following, we show a simple
example of MEDINA, for further reference see D3.5 of MEDINA [13].

Figure 7 depicts a simple Rego policy which checks the encryption algorithm used in an at-rest
encryption (e.g. a block storage in a cloud). Figure 8 shows the configuration stating that the
encryption algorithm should be at least 256 bits. Figure 9 shows an exemplary snippet of an
evidence (configuration of a block storage).

Figure 7. Example of a Rego policy [13]

Figure 8. Example of a Rego configuration [13]

6 https://github.com/clouditor/clouditor/blob/main/api/assessment/assessment.proto
7 https://www.openpolicyagent.org/docs/latest/

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor/blob/main/api/assessment/assessment.proto
https://www.openpolicyagent.org/docs/latest/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 76

www.emerald-he.eu

Figure 9. Example of an evidence [13]

In this example, the block storage has enabled encryption at rest and set the algorithm to have
256 bytes. Because the Rego policy and the configuration have defined that the evidence has to
have at least 256 bytes, the assessment succeeds and outputs that this evidence is compliant
(compliant is set to true).

4.1.2.2 Technical specifications

The Clouditor-Assessment is implemented using Go, providing efficient concurrency support and
ease of deployment in microservice architectures. The main communication protocols used are
REST and gRPC, ensuring high-performance interaction with other components.

• Programming Language: Go

• Communication Protocols: REST API and gRPC (including Protobuf)

• Security: OAuth and Role-Based Access

4.2 Delivery and usage

This section describes the information needed for the installation and use of the Assessment.
Besides, it also details the licensing information and related packages and repositories.

4.2.1 Package information

Table 5 shows the Assessment-relevant package structure in the Clouditor repository and Table
6 shows the package structure in the EMERALD framework, where the Assessment parts of
Clouditor are used as dependencies.

Table 5. Assessment package structure

Folder Description

api/assessment/ This folder contains code needed for the
communication with this component. It mainly
consists of auto-generated Protobuf and gRPC files.

api/ontology This folder contains the ontology objects (evidence
format) defined in certification graph in WP2.

cli/commands/service/assessment This folder contains the Clouditor CLI based source
code files

cmd/assessment/ This folder contains the main file.

openapi/assessment/ This folder contains the auto-generated OpenAPI
files for the Assessment.

policies/ This folder contains the Go implementation for using
the OPA engine and, therefore, Rego rules. It will
also contain the Rego policy files per metric.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 76

www.emerald-he.eu

rest/ This folder contains the REST gateway
implementation.

service/assessment/ This folder contains the source code for the
Assessment microservice.

Table 6. Assessment package structure in the EMERALD framework

Folder Description

cmd/emerald-assessment This folder contains the main file.

./ (Root directory) Beside the folders mentioned above, the root directory also
contains a workflow file needed for continuous integration
and deployment (.gitlab-ci.yml), a README file, a Go file
for launching the EMERALD Assessment and Go module files
for handling dependencies (go.mod and go.sum).

4.2.2 Installation

In EMERALD, we use GitLab’s CI/CD pipeline for continuous integration and deployment. For this
purpose, there is workflow file at each components root level (.gitlab-ci.yml).

For running the Assessment locally, there is a docker file (“Dockerfile”) located at the
components root level. For building and running the component, use the following commands:

docker build -t clouditor-assessment .
docker run -d -p 8080:8080 clouditor-assessment

4.2.3 Instructions for use

The Assessment is only used by internal components and is not exposed via the EMERALD UI.
Information regarding the Asssessment (e.g. metrics and assessment results) are transferred via
the Orchestrator.

To use the Assessment, run the Docker image and set the variable of the URL where the
assessment results are sent to (in EMERALD, this is the URL of the Orchestrator). When the
Assessment is running, it can receive metrics and metric configurations (in EMERALD this is done
by the Orchestrator in the beginning). Now, the assessment is ready and evidence can be sent
to it which will be assessed and the results sent to the URL which was set in the beginning.

4.2.4 Licensing information

The Assessment is offered under Apache 2.0 license. The license files and more detailed
information can be found in the GitLab repository.

4.2.5 Download

The source code for the Assessment in the Clouditor toolbox can be found in the Clouditor
GitHub repository8. The implementation of the Assessment component in EMERALD can be
found in the public EMERALD GitLab repository9.

8 https://github.com/clouditor/clouditor
9 https://git.code.tecnalia.com/emerald/public/components/assessment

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://git.code.tecnalia.com/emerald/public/components/assessment

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 76

www.emerald-he.eu

5 Clouditor-Evidence Store

The Clouditor-Evidence Store (in the following Evidence Store) is responsible for receiving
evidence from the evidence collectors (WP2), storing it in a graph-based representation
(certification graph [12]) and forwarding it for further processing (e.g. assessment, see Section
4). In the following, we provide information about the implementation as well as the delivery
and usage of the component.

5.1 Implementation

The Evidence Store component is a crucial part of the EMERALD framework, designed to
efficiently store and manage evidence collected from various sources. It is based on the
respective microservice of Clouditor and was already used in MEDINA [9]. It is planned to further
develop it to utilize a graph-based database for storing the certification graph, allowing for
efficient organization, retrieval, and updating of evidence, and enabling sophisticated
assessment of evidence distributed across various layers of a cloud service.

5.1.1 Functional description

Although in MEDINA, the Evidence Store was already storing evidence from different layers, it
was not designed to "connect" evidence from different layers (e.g. application code with
respective infrastructure configurations in the cloud). Therefore, we are planning to move
towards a certification graph, allowing more complex assessments on evidence (see Section 4)
to reflect the multi-dimensional needs of controls in a security catalogue.

Table 7 outlines the functional requirements satisfied by the current version of the Evidence
Store, as documented in D3.1 [2], and updates the status of their implementation in the current
prototype in M12.

Table 7. Evidence Store functional requirements

Req. ID Description Priority Milestone Progress

ESTORE.01 Storage of evidence as ontology entities in graph
database: The Evidence Store must store the
evidence according to the schema defined by the
knowledge graph. The preferred way to store this
information is a graph database.

Must MS3
(M18)

30%

ESTORE.02 Allow Interaction with Third-Party Tools: The
Evidence store should be allowed to accept evidence
from third-party tools, e.g., using a REST API. The
evidence needs to be in the ontology format.
Therefore, information about the ontology and data
models must be available.

Must MS8
(M34)

25%

5.1.1.1 Fitting into overall EMERALD Architecture

The Evidence Store is the central link between the Evidence Collectors (developed in WP2 [14],
[15], [16], [17]) and the WP3 components for assessment, evaluation and the final certification
decision, see Figure 10.

Different evidence collectors exist that gather evidence from different layers of the certification
target and send them to the Evidence Store: AMOE collects document information [15], Codyze
and eknows application code [14], AI-SEC ML systems [16], and Clouditor-Discover configuration
information from cloud systems [17]. The Evidence Store stores this evidence in a database and
forwards the respective evidence to the Assessment component for further processing.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 76

www.emerald-he.eu

The uniform evidence format adheres to the ontology defined in WP2 (see D2.1 [12]) and is
therefore the basis for the "decoupling" WP2 and WP3 components, regardless of the layer in
which the evidence is located.

Figure 10. Role of the Evidence Store in the EMERALD framework

5.1.2 Technical description

The technical description of the Evidence Store provides an in-depth look at its architecture,
components, and technical specifications. This section outlines the structure of the Evidence
Store, as well as the specific technologies and methods used in its implementation. The following
subsections detail the prototype architecture, components, and technical specifications.

Because the shift towards a certification graph is still work in progress, we present the previous
approach in MEDINA as well as the two approaches we are testing currently: using a dedicated
graph database vs. using regular a Postgres instance to represent a graph database for our needs
in EMERALD.

5.1.2.1 Prototype architecture

The architecture of the Evidence Store is shown in Figure 11. It comprises the Clouditor's REST
gateway and authorization mechanism as well as two specific components. The first component
is the Core (evidence_store.go in the code structure) which is mainly responsible for providing
and handling API requests as well as for instantiating an evidence store component. The second
component is Persistence, which is handling the storage of the Evidence, i.e. the intended graph
database in the context of EMERALD.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 76

www.emerald-he.eu

Figure 11. The prototype architecture of the Evidence Store

5.1.2.1.1 Components description

The architecture of the Evidence Store includes several key elements and functionalities:

• Clouditor's REST Gateway and Authorization: The Evidence Store uses Clouditor's REST
Gateway to allow REST calls for components not able to communicate via gRPC. This ensures
compatibility and flexibility in communication protocols. Additionally, the Orchestrator
leverages Clouditor's Authorization implementation to provide state-of-the-art
authentication mechanisms, such as OAuth2, which is used in EMERALD.

• The Core (evidence_store.go):
o Function NewService for instantiating a new Evidence Store (can potentially be

scaled to several instantiations which, e.g., access the same database)
o API-corresponding functions that implement the Evidence Store Service interface

(for all relevant API endpoints see below). The interface comprises CRUD
functionalities, e.g. StoreEvidence to let an evidence collector of WP2 store
evidence. For these purposes, the implemented methods access the persistence
component which is described next.

• Persistence
o The persistence component is implementing the persistence interface defined in

Clouditor which requires to implement the following methods: Create, Save,
Update, Get, List, Count, Delete and Raw (for raw DB-specific statements). The idea
behind is to allow for the usage of different database (schemes) depending on the
current needs. In the context of EMERALD, e.g., we want to move to a graph-based
representation which reflects the evidence that is gathered on different layers on a
certification target. One requirement is that it is open-source and has a suitable
license, e.g. Apache 2, which allows the free use of this database. The second
requirement is that it must have a native Go client or provide other mechanisms for
seamless integration with Go.

o As stated earlier this is work in progress. Therefore, we provide in the following brief
descriptions of the database approach that is currently in place and two approaches
we try to implement for efficient storage and usage of multi-layer evidence:

▪ Current state of the art [18]: Offering an in-memory storage as well as a
PostgreSQL connection.

▪ Dedicated graph-based database: We examined different databases based
on the requirements outlined above (see also APPENDIX A: Examination of
Graph DB Engines for a detailed list) and decided to proceed with Dgraph10,

10 https://dgraph.io/

http://www.emerald-he.eu/
https://dgraph.io/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 76

www.emerald-he.eu

which we are currently testing. Dgraph is an open-source, distributed graph
database that provides high performance and horizontal scalability. It is
designed to handle complex queries and large-scale data with ease, making
it well-suited for our needs within the EMERALD framework.

▪ A standard SQL-like (non-graph) database adapted for EMERALD: The
second approach we are pursuing involves using a conventional database
and customizing it to meet the requirements of EMERALD. This includes
defining nodes and edges in the schema to enable the connection of
evidence across different layers.

All API endpoints are listed below with a brief explanation:

• StoreEvidence: Stores a single piece of evidence into the evidence store. The endpoint
is exposed via gRPC as well as REST.

• StoreEvidences: Stores a stream of evidence by opening a continued connection with
the component that calls this endpoint. Because the connecting component does not
have to open a new connection for each single evidence, multiple evidence can be
stored much faster. In particular in the case of EMERALD, this can result in a major boost
because complex distributed systems can lead to thousands of pieces of evidence that
have to be stored. This endpoint is only exposed via gRPC and not at REST.

• ListEvidences: Returns all stored evidence. The endpoint is exposed via gRPC as well as
REST.

• GetEvidence: Returns a particular stored piece of evidence. The endpoint is exposed via
gRPC as well as REST.

5.1.2.2 Technical specifications

The Evidence Store is implemented using Go, providing efficient concurrency support and ease
of deployment in microservice architectures. The main communication protocols used are REST
and gRPC, ensuring high-performance interaction with other components.

• Programming Language: Go

• Communication Protocols: REST API and gRPC (including Protobuf)

• Database: PostgreSQL or Dgraph (work in progress, see above)

• Security: OAuth and Role-Based Access

5.2 Delivery and usage

This section describes the information needed for the installation and use of the Evidence Store.
Besides, it also details the licensing information and related packages and repositories.

5.2.1 Package information

Table 8 shows the Evidence Store-relevant package structure in the Clouditor repository and
Table 9 shows the package structure in the EMERALD framework, where the Evidence Store parts
of the Clouditor are used as dependencies.

Table 8. Evidence Store relevant package structure

Folder Description

api/evidence/ This folder contains code needed for the
communication with this component, including the
definition of an evidence as well as the API endpoints.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 76

www.emerald-he.eu

It mainly consists of auto-generated Protobuf and gRPC
files.

api/ontology This folder contains the ontology objects (evidence
format) defined in certification graph in WP2.

cli/commands/service/evidence This folder contains the Clouditor CLI based source
code files

cmd/evidence_store/ This folder contains the main file.

openapi/evidence/ This folder contains the auto-generated OpenAPI files
for the Evidence Store.

rest/ This folder contains the REST gateway implementation.

service/evidence/ This folder contains the source code for the Evidence
Store microservice.

Table 9. Evidence Store package structure in EMERALD framework

Folder Description

cmd/emerald-evidence-
store

This folder contains the main file.

./ (Root directory) Beside the folders mentioned above, the root directory also
contains a workflow file needed for continuous integration
and deployment (.gitlab-ci.yml), a README file, a Go file
for launching the EMERALD Evidence Store and Go module
files for handling dependencies (go.mod and go.sum).

5.2.2 Installation

In EMERALD, we use GitLab’s CI/CD pipeline for continuous integration and deployment. For this
purpose, there is workflow file at each components root level (.gitlab-ci.yml).

For running the Evidence Store locally, there is a docker file (“Dockerfile”) located at the
components root level. For building and running the component, use the following commands:

docker build -t clouditor-evidence-store .
docker run -d -p 8080:8080 clouditor- evidence-store

5.2.3 Instructions for use

The Evidence Store is only used by internal components and is not exposed via the EMERALD UI.
Other evidence information, e.g. resources to show a resource graph, is received by the
EMERALD UI from the Orchestrator. Figure 12 shows a digital mock-up for the resource graph,
as presented in D4.3 [11].

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 76

www.emerald-he.eu

Figure 12. Digital mock-up for a resource graph (D4.3 [11])

To use the Evidence Store, run the Docker image and set the variable of the URL where the
evidence is sent to (in EMERALD, this is the URL of the Orchestrator).

5.2.4 Licensing information

The Evidence Store is offered under Apache 2.0 license. The license files and more detailed
information can be found in the GitLab repository.

5.2.5 Download

Thesource code for the Evidence Store in the Clouditor toolbox can be found in the Clouditor
GitHub repository11. The implementation of the Evidence Store in EMERALD can be found in the
public EMERALD GitLab repository12.

11 https://github.com/clouditor/clouditor
12 https://git.code.tecnalia.com/emerald/public/components/evidence-store

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://git.code.tecnalia.com/emerald/public/components/evidence-store

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 76

www.emerald-he.eu

6 Mapping Assistant for Regulations with Intelligence (MARI)

MARI is an intelligent system capable of selecting the optimal set of metrics to associate with
one or more certification schemes. The metrics can be measured to evaluate the cloud system’s
compliance with the certification scheme. Another main feature of MARI is the ability to
associate controls from different certification schemes.

The MARI component is based on the Metric Recommender13 tool developed in MEDINA [19].

6.1 Implementation

The objective of MARI is to experiment with Deep Learning and NLP tools for automatic
associations between:

• a security control and one or more security metrics;

• security controls coming from different certification schemes.

6.1.1 Functional description

Data input to MARI are the controls and metrics stored in the Repository of Controls and Metrics
(described in Section 8). After selecting a set of controls and metrics, MARI starts the elaboration
of the association either between controls or between a control and one or more metrics. The
results are visualised in the EMERALD UI.

Table 10 shows a collection of functional requirements (from deliverable D1.3 [20]) related to
the component, together with a description of how and to what extent these requirements are
implemented at time of writing.

Table 10. MARI functional requirements.

Req. ID Description Priority Milestone Progress

MARI.01 AI-based: MARI is a tool based on state-of-the-art
artificial intelligence, e.g., uses a transformer-based
architecture

Must MS6
(M30)

100%

MARI.02 Automatic association: MARI takes as input cloud
security controls written in natural language, metrics
that validate those controls, again written in natural
language, and automatically returns as output the
association control/metric(s) and the association
control/control.

Must MS6
(M30)

50%

MARI.03 Performance Evaluation: The performance of MARI
should improve on the performance of the Metric
Recommender of EMERALD’s predecessor project,
MEDINA. We can assume that we measure the
performance of MARI with the same metrics used for
the Metric Recommender, namely precision@k and
NDCG (Normalised Discounted Cumulative Gain).

Must MS6
(M30)

70%

MARI.04 Usage and Visualization: MARI should be invoked
through EMERALD's built-in interface, and MARI
results can be visualized through the same interface.

Must MS6
(M30)

15%

MARI.05 Strategies: MARI can act according to specific
strategies, such as considering only technical
controls, or organizational controls, or controls of a
certain category, or controls whose implementation

Must MS6
(M30)

15%

13 https://git.code.tecnalia.com/medina/public/nl2cnl-translator

http://www.emerald-he.eu/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 76

www.emerald-he.eu

costs less in terms of human resources, etc. The
strategies will be defined during the project.

Regarding innovation, in contrast to its predecessor, the MEDINA Metric Recommender [19],
MARI will support a wider range of controls from multiple certification schemes. A key
enhancement is MARI’s ability to automatically map controls across different certification
schemes, a task that previously required manual effort in the MEDINA project. Users will also
have the option to define specific strategies for associating metrics with controls and for
mapping controls to each other. Additionally, AI-based tools utilising transformer-based
architectures are employed, enhancing both the performance and accuracy of metric-to-control
associations compared to the original Metric Recommender.

To evaluate the performance, the metric we consider at the time of writing is the NDCG14.
Experimenting with the approach based on sentence transformers, with 70 requirements and
162 metrics considered, we obtained NDCG@10 = 0.640, improving the performance of the
MEDINA Metric Recommender by 0.146 points.

6.1.1.1 Fitting into overall EMERALD Architecture

Figure 13 shows the integration of MARI within the overall EMERALD architecture. MARI is
expected to interact with the Repository of Controls and Metrics, which is its main source of data
since it contains the controls and the metrics descriptions and the metadata. Moreover, MARI
interacts also with the Emerald UI, through which it is possible to visualize the associations. It
important to note that the interactions with other components have not yet been defined in
detail. We therefore expect that there may be changes, and the next version of this deliverable
(D3.4 [5]), due in month 24, will detail MARI's interactions with other components.

Figure 13. Fitting MARI with other components in EMERALD architecture

6.1.2 Technical description

The MARI component is written in Python 3.10.12 and organized as a Python notebook, an
interactive computational environment that helps to manipulate and analyse data using Python.
It contains all the content from a web application session, including computation inputs and
outputs, mathematical functions, images, and explanatory text, making work more transparent,
understandable, and reproducible.

14https://towardsdatascience.com/evaluation-metrics-for-recommendation-systems-an-overview-
71290690ecba

http://www.emerald-he.eu/
https://towardsdatascience.com/evaluation-metrics-for-recommendation-systems-an-overview-71290690ecba
https://towardsdatascience.com/evaluation-metrics-for-recommendation-systems-an-overview-71290690ecba

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 76

www.emerald-he.eu

Figure 14 shows the expected architecture of MARI, as well as the interactions with the RCM
and EMERALD UI components. We remind the reader that this is a draft of the architecture and
interactions, and changes may apply during the project lifetime due to better arrangements.

Figure 14. Overview of the MARI architecture and interactions

The MARI modules are organized into two components according to the functionalities they
offer:

• API Server: It serves as the API interface for various EMERALD components, facilitating
communication and interaction. In addition to this role, it also plays a crucial part in
coordinating all operations and managing the connections with other components,
ensuring seamless integration and functionality across the system.

• MARI: Given one control and a set of metrics, it provides the association between the
control and related metrics. Given two certification schemes -1 and 2-, it provides the
association between one control from scheme 1 and one control from scheme 2, if any.

6.1.2.1 Prototype architecture

The architecture of MARI includes subcomponents that map controls to metrics (and controls to
controls). As the evaluation process analyses this information, it generates tailored
recommendations. The output is represented by the controls and associated metrics (and the
controls and associated controls). For each control, all of the most relevant metrics (controls)
are displayed, in descending order. Arrows in the diagram indicate the flow of information,
showing how data moves to the analytical component and ultimately to the output. Figure 15
shows one use case: the controls-metrics association.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 76

www.emerald-he.eu

Figure 15. Detailed architecture of MARI component

Controls and metrics are stored in two separate CSV files. Both files are processed using the
model multi-qa-mpnet-base-dot-v1, which generates embeddings for all the items. The
cosine_similarity function from the scikit-learn library creates associations for each control7. The
resulting associations are ranked by relevance and saved in a CSV file. The first column contains
the ID of the control, while the subsequent columns list the associated metrics, ordered by their
relevance. In the near future, we will also experiment with the control-control associations.

6.1.2.2 Technical specifications

The MARI component responsible for creating the associations is developed using Python
version 3.10.12. Below is a selection of the main libraries utilised in the project. A complete list
of all dependencies can be accessed through the GitLab repository.

· pandas
· sentence-transformers → multi-qa-mpnet-base-dot-v1
· sklearn
· numpy
· matplotlib
· numpy

The multi-qa-mpnet-base-dot-v1 model is a sentence transformer designed for semantic search
tasks, mapping sentences and paragraphs to a 768-dimensional dense vector space. It was
trained on 215 million question-answer pairs from diverse sources such as WikiAnswers, Stack
Exchange, MS MARCO, and more. The model intends to encode both queries and passages for
efficient retrieval of relevant documents in a dense vector space. For longer texts, truncation
occurs, which may affect accuracy, but this is not our case since the text of the metrics and
controls does not reach long dimensions15.

At the time of writing, MARI’s developers are experimenting with the following sentence
transformer models:

• all-mpnet-base-v216

• multi-qa-mpnet-base-dot-v117

• all-distilroberta-v118

15 Hugging Face, multi-qa-distilbert-cos-v1, https://huggingface.co/sentence-transformers/
multi-qa-distilbert-cos-v1, 2024. Online; accessed 12 Sept 2024
16 Hugging Face, all-mpnet-base-v2, https://huggingface.co/sentence-transformers/
all-mpnet-base-v2, 2024. Online; accessed 12 Sept 2024.
17 Hugging Face, multi-qa-mpnet-base-dot-v1, https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1, 2024. Online; accessed 12 Sept 2024
18 Hugging Face, all-distilroberta-v1, https://huggingface.co/sentence-transformers/

http://www.emerald-he.eu/
https://huggingface.co/sentence-transformers/
https://huggingface.co/sentence-transformers/
https://huggingface.co/sentence-transformers/
https://huggingface.co/sentence-transformers/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 76

www.emerald-he.eu

• all-MiniLM-L12-v219

• multi-qa-distilbert-cos-v120

all-distilroberta-v1, 2024. Online; accessed 12 Sept 2024
19 Hugging Face, all-MiniLM-L12-v2, https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2, 2024. Online; accessed 12 Sept 2024.
20 Hugging Face, multi-qa-distilbert-cos-v1, https://huggingface.co/sentence-transformers/
multi-qa-distilbert-cos-v1, 2024. Online; accessed 12 Sept 2024

http://www.emerald-he.eu/
https://huggingface.co/sentence-transformers/
https://huggingface.co/sentence-transformers/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 76

www.emerald-he.eu

6.2 Delivery and usage

This section describes the information needed for the installation and use of MARI. Besides, it
also details the licensing information and related packages and repositories.

6.2.1 Package information

The code in the repository follows the structure outlined in Table 11. There is no Docker
configuration or API access in the current version. The code that generates the associations can
be run through the Jupyter Notebook file code.ipynb, which takes two CSV files containing
metrics and controls as input and returns a file in the same format with the associations between
them, using a model based on sentence transformers.

The integration functionalities with the other components, as well as the API and the use of
Docker will be developed in the course of the project.

Table 11. MARI package information

Folder/file Description

code.ipynb Jupyter notebook with the code for associating controls
and metrics

dataset/metrics.csv CSV file with the metrics data (input)

dataset/controls.csv CSV file with the control data (input)

dataset/recommendations.csv CSV file with association data (output)

libraries.txt List of Python libraries and their versions

README.md Project description and setup instructions

6.2.2 Installation

The project requires Python 3.10.12, which can be downloaded from the official Python
website10. The installation can be verified from the terminal by running the following command:

python --version

The output should confirm that Python 3.10.12 has been correctly installed.

It is often beneficial to create a virtual environment for the project. A virtual environment keeps
the project's dependencies isolated from the system’s main Python installation. The command
is:

python -m venv myenv

To activate the environment:

For Windows, the command is:

myenv\Scripts\activate

For macOS or Linux:

source myenv/bin/activate

The project relies on several Python libraries, all of which are listed in the libraries.txt file.
By navigating to the project directory and using the following command, all necessary libraries
can be installed with:

pip install -r libraries.txt

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 76

www.emerald-he.eu

Once the setup is complete, the Jupyter Notebook file “code.ipynb” can be opened. This
notebook contains the code required for the associations and can be accessed through Jupyter
Notebook or JupyterLab by running the following command:

jupyter notebook code.ipynb

All these steps are also explained in the readme file of the EMERALD public Gitlab repository21.

6.2.3 Instructions for use

To use the code in the file code.ipynb, the two CSV files containing the metrics and the controls
must be placed in the dataset folder (these files are included in the current version of the code).
After this, executing all the cells in the notebook generates the associations. The results are
saved in a specific file named recommendations.csv, formatted as shown in Figure 16. This file
will contain a list of controls associated with the metrics (Requirement ID and Recommended
Metrics), ordered by relevance.

Figure 16. Output file preview of the associations between controls and metrics

Within the EMERALD project, the EMERALD UI is used to access and manage the workflow in the
framework. In the case of MARI, the UI interacts with it by using the components API endpoints.
Currently, the EMERALD UI is work in progress, but some clickable mock ups have been designed
in D4.3 [11], e.g. to present the results of the mapping of metrics to controls, as shown in Figure
17, or to present the mapping of controls between two security schemes, as shown in Figure
18).

21 https://git.code.tecnalia.com/emerald/public/components/mari

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/mari

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 76

www.emerald-he.eu

Figure 17. MARI - Overview of controls and mapped metrics (D4.3 [11])

Figure 18. MARI - Mapping controls from EUCS to BSI C5 (D4.3 [11])

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 40 of 76

www.emerald-he.eu

6.2.4 Licensing information

The MARI component is open source, under the Apache License 2.0.

6.2.5 Download

The source code can be found in public EMERALD repository22.

22 https://git.code.tecnalia.com/emerald/public/components/mari

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/mari

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 41 of 76

www.emerald-he.eu

7 Clouditor-Evaluation

The Clouditor-Evaluation component (in the following Evaluation) is responsible for evaluating
(multiple) assessment result(s) to show the compliance for specific controls of a security
catalogue.

7.1 Implementation

This component is based on the respective microservice of Clouditor. It is inspired by the work
that was done in MEDINA [10].

7.1.1 Functional description

For given controls of a security catalogue and assessment results the Evaluation decides if the
certification target is compliant with respect to a respective control. The Orchestrator starts the
Evaluation component (see API endpoint StartEvaluation in Section 7.1.2.1.1) with information
of the Certification Target ID and the Catalogue ID as well as an interval. This information is used
to retrieve the respective assessment results and the controls from the Orchestrator and
aggregate them into an evaluation result. The evaluation is carried out periodically, the time
span depends on the interval that has been set (if not set, the default value of 5 minutes will be
used).

Table 12 outlines the functional requirements satisfied by the current version of the Evaluation,
as documented in D3.1 [2], and updates the status of their implementation in the current
prototype in M12.

Table 12. Evaluation Functional Requirements

Req. ID Description Priority Milestone Progress

EVAL.01 Display cause of failing evaluation result: We want to
know why the evaluation result fails or passes.
Therefore, it should contain a list of assessment results
that cause the evaluation status to be non-compliant.

Must MS6
(M30)

100%

EVAL.02 Evaluation based on assessment results: The
evaluation should assess the result based on all
the required assessment results stored in the
database.

Must MS6
(M30)

100%

7.1.1.1 Fitting into overall EMERALD Architecture

The only connection of the Evaluation to another component in the EMERALD framework is to
the Orchestrator, see Figure 19. Its only purpose is the evaluation of multiple assessment results
for a given control. The decoupling from the Orchestrator allows to scale up fast and easy if there
is a need for higher performance, e.g. because there are so many assessment results and many
controls, we need evaluation for.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 42 of 76

www.emerald-he.eu

Figure 19. Role of the Evaluation in the EMERALD framework

7.1.2 Technical description

The technical description of the Evaluation provides an in-depth look at its architecture,
components, and technical specifications. This section outlines the structure of the Evaluation,
as well as the specific technologies and methods used in its implementation. The following
subsections detail the prototype architecture, components, and technical specifications.

7.1.2.1 Prototype architecture

The architecture of the Evaluation is shown in Figure 20. The Evaluation can provide REST and
gRPC endpoints for connectivity. In the EMERALD framework, the Evaluation only connects to
the Orchestrator, which utilizes the gRPC endpoints.

Figure 20. The prototype architecture of the Evaluation component

7.1.2.1.1 Components description

The architecture of the Evaluation includes the following key elements and functionalities:

• Clouditor's Authorization: The Evaluation uses Clouditor's Authorization
implementation to provide state-of-the-art authentication mechanisms, such as
OAuth2, which is used in EMERALD.

• The Core (evaluation.go):
o Function NewService for instantiating a new Evaluation (can potentially be

scaled to several instantiations to handle more evaluation requests).
o API-corresponding functions that implement the Evaluation Service interface

(for all relevant API endpoints see below), e.g. StartEvaluation for starting the

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 43 of 76

www.emerald-he.eu

evaluation for a specific audit scope (combination of certification target and
catalogue).

In the following, all API endpoints are listed accompanied by a short explanation:

• StartEvaluation: Evaluates periodically all assessment results of a certification target
based on the given catalogue. It is also possible to set the interval, which specifies the
time between repeated executions. Exposed via gRPC as well as REST.

• StopEvaluation: Stops the evaluation for the given certification target and catalogue.
Exposed via gRPC as well as REST.

• ListEvaluationResults: List all evaluation results that the caller (user) can access. Filtering
options are available for the endpoint, allowing users to filter by certification target and
catalog. Exposed via gRPC as well as REST.

• CreateEvaluationResult: Only manually created evaluation results can be generated
through this endpoint. Exposed via gRPC as well as REST.

7.1.2.2 Technical specifications

The Evaluation is implemented using Go, providing efficient concurrency support and ease of
deployment in microservice architectures. The main communication protocols used are REST
and gRPC, ensuring high-performance interaction with other components.

• Programming Language: Go

• Communication Protocols: REST API and gRPC (including Protobuf)

• Security: OAuth and Rol-Based Access

7.2 Delivery and usage

This section describes the information needed for the installation and use of the Evaluation.
Besides, it also details the licensing information and related packages and repositories.

7.2.1 Package information

Table 13 shows the Evaluation-relevant package structure in the Clouditor repository and Table
14 shows the package structure in the EMERALD framework, where the Evaluation parts of the
Clouditor are used as dependencies.

Table 13. Evaluation relevant package structure

Folder Description

api/evaluation/ This folder contains code needed for the
communication with this component. It mainly consists
of auto-generated Protobuf and gRPC files.

cmd/evaluation/ This folder contains the main file.

openapi/evaluation/ This folder contains the auto-generated OpenAPI files
for the Evaluation.

rest/ This folder contains the REST gateway implementation.

service/evaluation/ This folder contains the source code for the Evaluation
microservice.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 44 of 76

www.emerald-he.eu

Table 14. Evaluation package structure in the EMERALD framework

Folder Description

cmd/emerald-evaluation This folder contains the main file.

./ (Root directory) Beside the folders mentioned above, the root directory also
contains a workflow file needed for continuous integration
and deployment (.gitlab-ci.yml), a README file, a Go file
for launching the EMERALD Assessment and Go module files
for handling dependencies (go.mod and go.sum)

7.2.2 Installation

In EMERALD, we use GitLab’s CI/CD pipeline for continuous integration and deployment. For this
purpose, there is workflow file at each components root level (.gitlab-ci.yml).

For running the Evaluation locally, there is a docker file (“Dockerfile”) located at the components
root level. For building and running the component, use the following commands:

docker build -t clouditor-evaluation .
docker run -d -p 8080:8080 clouditor- evaluation

7.2.3 Instructions for use

The Evaluation is only used by one internal component, the Orchestrator. It is not exposed via
the EMERALD UI. But information of this component, the evaluation results, are stored in the
Orchestrator which are presented in the EMERALD UI eventually.

To use the Evaluation component, simply run the Docker image and wait for information sent
by the Orchestrator, e.g. which assessment results are needed for a given control. The
Orchestrator is continuously leveraging the Evaluation (or multiple instances of it) to calculate
evaluation results for a given set of controls.

7.2.4 Licensing information

The Evaluation is offered under Apache 2.0 license. The license files and more detailed
information can be found in the GitLab repository.

7.2.5 Download

The source code for the Evaluation component in the Clouditor toolbox can be found in the

Clouditor GitHub repository23. The implementation of the Evaluation in EMERALD can be found

in the public EMERALD repository24.

23 https://github.com/clouditor/clouditor
24 https://git.code.tecnalia.com/emerald/public/components/evaluation

http://www.emerald-he.eu/
https://github.com/clouditor/clouditor
https://git.code.tecnalia.com/emerald/public/components/evaluation

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 45 of 76

www.emerald-he.eu

8 Repository of Controls and Metrics (RCM)

The Repository of Control and Metrics (RCM) is a smart catalogue of controls and metrics that
provides a central point in the EMERALD frameworks where Compliance managers and Auditors
can obtain all the information related to security certification schemes (i.e., controls, security
requirements, assurance levels, etc.), that is, everything that can be considered “static”
information that appears in the scheme. The RCM supports multi-scheme and multi-level
certification and incorporates the definition of the metrics used in EMERALD to assess evidence.

The RCM will also provide mechanisms to update the catalogues and maintain a versioning
system and will foster the interoperability using OSCAL25 as exchange format. This feature will
allow importing and exporting catalogues to facilitate the reuse and composition of the
catalogue elements. In addition, the RCM will manage other information, such as the mapping
of controls and metrics provided by the MARI component, the guidelines (e.g., guidelines for
EUCS requirements are already included) and a self-assessment questionnaire to assess
compliance for the EUCS [7].

8.1 Implementation

The implementation of the RCM component is based in the MEDINA component Catalogue of
Controls and Metrics26 [21]. This foundational tool was the baseline for elaborating the
specifications of the RCM, that are documented in D3.1 [2]. This section presents the functional
description and technical description of the component.

8.1.1 Functional description

The Repository of Controls and Metrics (RCM) provides a central point in the EMERALD
framework where the certification schemes are stored and managed. It consists of a repository
capable of containing different certification schemes, including the information of each scheme
categorized by classes (e.g., categories, controls, assurance levels, etc.) and supporting multi-
scheme and multi-level certification. The RCM also incorporates the definition of the metrics
used in EMERALD to assess evidence.

The RCM provides the user with an automated tool where a Compliance Manager or an Auditor
can select a security scheme and obtain all related information and guidance by navigating
though the scheme via the user interface, instead of having to read a paper document. This is
what we can refer as the "static" information of the standard.

The RCM will provide mechanisms to update the catalogues and maintain a versioning system
and will foster the interoperability using OSCAL as exchange format. This feature will allow
importing and exporting catalogues into/from the RCM. In addition, the RCM will manage other
information, such as:

• The mappings generated by the MARI component, which provide information on related
controls from different security schemes.

• The control implementation guidelines (guidelines for EUCS requirements are already
included).

• A self-assessment questionnaire, that allows the user to assess the compliance against
the EUCS security scheme. It includes all levels of certifications (Basic, Substantial and
High), with several questions to check the fulfilment at sub-control level
(”requirements” in EUCS). It also allows the user to enter comments, textual references

25 OSCAL: Open Security Controls Assessment Language, https://pages.nist.gov/OSCAL/
26 https://git.code.tecnalia.com/medina/public/catalogue-of-controls

http://www.emerald-he.eu/
https://pages.nist.gov/OSCAL/
https://git.code.tecnalia.com/medina/public/catalogue-of-controls

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 46 of 76

www.emerald-he.eu

to locate the evidence supporting the answers, and non-conformities for each
requirement that is not fulfilled.

Table 15 shows the functional requirements satisfied by the current version of the RCM, as
documented in D3.1 [2], and updates the status of their implementation in the current
prototype in M12.

Table 15. RCM Functional Requirements

Req. ID Description Priority Milestone Progress
RCM.01 Multi-schema support: The repository should contain

at least an additional security scheme, apart from the
EUCS that is the scheme implemented in MEDINA
Catalogue and is inherited in EMERALD

Must MS2
(M12)

90%

RCM.02 Accessible by the rest of components: The repository
content should be made accessible to the rest of
EMERALD components via API

Must MS2
(M12)

100%

RCM.03 Include metrics for all schemes supported: The
repository should include metrics that could be used to
assess the compliance with one or more certification
schemes

Must MS2
(M12)

30%

RCM.04 Mapping of schemes: The repository should support
the mapping of the certification schemes contained.
The scheme-to-scheme mapping will be provided by
the MARI tool and stored in the repository. The
rationale for the mapping decision will also be stored.

Should MS5
(M24)

10%

RCM.05 Import/export of security schemes in OSCAL: The
repository is able to import a new scheme defined in
the OSCAL language (this feature can also be used to
update an existing scheme). The repository is able to
export any available scheme in OSCAL format.

Must MS6
(M30)

40%

RCM.06 Import/export of security schemes in CSV format: The
repository can export a scheme to a CSV file, and import
a CSV file with the same format as a new scheme

Could MS2
(M12)

60%

RCM.07 Support for personalized catalogues: The Repository
has to offer the user the possibility to create a
personalized catalogue of controls. These controls can
be taken from the same or from different security
schemes.

Must MS6
(M30)

0%

RCM.08 Support updating/versioning of schemes: The
Repository has to maintain a versioning system of the
schemes it contains, so that if a new version is
uploaded, it is able to detect the change and notify the
user that a new version is available

Should MS6
(M30)

10%

8.1.1.1 Fitting into overall EMERALD Architecture

The RCM is one of the components of the EMERALD architecture. Figure 21 shows the
interaction with other tools in the EMERALD framework.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 47 of 76

www.emerald-he.eu

Figure 21. Fitting of the RCM with other components in the EMERALD architecture

The main interactions of the RCM with the EMERALD components are as follows:

• Clouditor-Orchestrator retrieves the information about the schemes and the metrics
from the RCM. It stores this information internally for efficiency reasons. This
information is used to configure the extractors and organize the evidence.

• Mapping Assistant for Regulations with Intelligence (MARI) gets the same information
about the schemes and the metrics from the RCM, and processes it to obtain the
required mappings, that are then sent back to the RCM in order to store them for further
use.

• EMERALD UI uses the RCM API-REST to call services depending on the user request. The
information required is then translated into internal queries to the RCM Database,
which returns the data. This data is then packed in JSON format in the REST call and sent
to the EMERALD UI for displaying. Other types of interaction occur when the user wants
to change the content of the repository (for example, introducing a new scheme), or fill
in the self-assessment questionnaire.

• AMOE is a knowledge extractor from documents. It obtains from the RCM the definition
of the security metrics that are used to evaluate evidence in policy documents.

8.1.2 Technical description

This section describes the technical specification of the RCM component. First, we present the
main architecture of the prototype, including all its sub-components. Next, the technical
specifications of the developed system are presented. The section finishes with the description
of the published APIs.

8.1.2.1 Prototype architecture

The RCM architecture is built using a microservices architecture27, which divides the front end
and back end to make it easier to scale for increasing user counts and to withstand infrastructure

27 https://www.jhipster.tech/tech-stack/

http://www.emerald-he.eu/
https://www.jhipster.tech/tech-stack/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 48 of 76

www.emerald-he.eu

problems. Additionally, this approach gets everything ready for the phases of exploitation and
sustainability.

The RCM comprises five main sub-components, as illustrated in Figure 22. They are briefly
outlined as follows:

• Frontend: This sub-component serves as the RCM's graphical user interface, enabling
users to filter the view and choose the specific information they wish to review from the
existing schemes (e.g., controls of a certain scheme, metrics related to specific controls,
etc). This sub-component will be developed as part of the EMERALD UI and will interact
with the backend through the API. The component will also provide a second “internal”
frontend, for development and management purposes, that makes it possible to use the
RCM alone.

• Backend: This is the central sub-component of the RCM, responsible for implementing
the APIs to manage the scheme data based on the user-defined filters via the UI or API
calls. In a general microservices architecture, it can consist of multiple specialized
applications, each containing a few related entities and business rules.

• Converter Backend, which is dedicated to scheme conversions to/from OSCAL, and
other possible import/export functionalities.

• Registry, which is an internal sub-component provided by the framework that facilitates
the creation of a microservices architecture component that interconnects the other
sub-components and enables their communication.

• Furthermore, data persistence is facilitated by a SQL database (MySQL) connected to
the backend.

Figure 22. Architecture of the Repository of Controls and Metrics (RCM)

8.1.2.1.1 Components description

The components of the RCM are detailed in the following paragraphs.

Frontend

It is the graphical user interface of the RCM. Its main purpose is to serve as the interface for the
user to interact with the RCM. It will be constructed based on two main foci (i) the information
contained in the RCM, that has to be made available to the user; and (ii) the user needs to work,
through the EMERALD workflow, with that information. The result is a set of screens that will
serve primarily to present the information contained in the RCM to the user, and a set of
commands (menu items or buttons) to produce actions to Create/View/Edit the elements on
the screen.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 49 of 76

www.emerald-he.eu

Regarding the View actions, the frontend should allow the users filtering and ordering the set of
information they want to view. For example, controls from a certain framework, or metrics
related to a control.

Regarding the Create/Edit actions, the user is quite limited with the RCM, because its main
objective is to store existing norms or standards that, logically, should not be modified by the
user. However, some actions are permitted like the creation of particular sets of controls to
create a personalised user-owned schema.

Backend

It is the core sub-component of the Repository. It performs the actual discovery of the data
entities like controls, metrics, etc. from the security schemes stored in the database. The
backend is a passive sub-component that waits the call to the API endpoints. Whenever the
backend receives a call, it performs the following consecutive steps:

1. Receives the API calls from the Frontend.
2. Transforms the call them into SQL queries.
3. The queries are executed against the MySQL database.
4. The results (if any) are packed into the JSON data schemas.
5. The information is returned to the caller, with a code indicating the success/error of

the call.

The possible filters established by the user through the UI/API are translated directly to queries
to produce the desired results. The backend makes use of a MySQL database containing the data
of the stored schemas and the defined metrics.

Converter Backend

This is a new sub-component that deals with conversion facilities, not available in the MEDINA
Catalogue, that have been introduced in EMERALD. The Converter Backend mission is to
“translate” any scheme stored in the RCM to a standard language. The OSCAL language has been
selected as the main conversion language, but conversion from/to CSV files will also be
implemented.

The Converter is a stand-alone backend, which will be deployed as a separate container, and is
coded in Python language. The operation is typical of a backend: when it receives an export
order from the frontend, it will access the database, extract the scheme, apply the conversion
logic and provide as output the same information but adapted to the schema of the OSCAL
interchange language. When dealing with an import order, the logic will translate the
OSCAL/CSV entry into the internal schema of the database and provide as output a new security
scheme available in the RCM.

Registry

The Registry in this version is Consul, provided by HashiCorp28. It has to be setup before the rest
of the subcomponents, as it stores internal information about the Frontend and Backend and
performs checks to control that the whole framework is up and running. It guarantees the
security of the RCM component.

28 https://www.consul.io/

http://www.emerald-he.eu/
https://www.consul.io/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 50 of 76

www.emerald-he.eu

8.1.2.2 Technical specifications

On the server side, the Backend and the Registry will use Maven, Spring MVC REST for the API,
Spring Data JPA, Netflix OSS29 and Python - Flask REST API30.

The internal Frontend will make use of Angular, Webpack, Yeoman, JavaScript, and Bootstrap
technologies on the client side.

The API endpoints of the RCM are briefly described in the following:

• Schema: Retrieves the information about a certification schema (categories, controls, sub-
controls, metrics, etc) as needed. It includes filters to extract only the required data, as well
as search functionalities. Exposed as a REST API.

• Mapping: Sets a control mapping among schemes, where controls of two different schemes
are considered equivalent and thus linked. It will be called by the MARI component. Exposed
as a REST API.

• Import-export: Manages import/export of security schemes in OSCAL. It will accept as import
a scheme written OSCAL, following a pre-defined template that must be defined. The export
functionality will provide as output the schema selected by the user from the RCM in the
mentioned OSCAL format. Exposed as a REST API.

8.2 Delivery and usage

This section describes the main packages of the RCM. Some instructions for installation and use
are presented and the section finishes with information about licencing and download.

8.2.1 Package information

The RCM contains the following main packages:

• The Backend package31, responsible for implementing the logic of the RCM and manage
the persistence of the data used and generated.

• The Converter package32, responsible for performing the conversions between the
different supported catalogue formats.

• The Development Frontend package33, responsible for provisioning the web interface
to use the functionalities of the RCM.

Besides, the RCM requires some additional packages (side services) from state of the practice to
fulfil its features (see Figure 23):

• Consul package, responsible for providing the configuration to the RCM main
components and enabling the discovery of the backend services from the frontend
services.

• MariaDB34 package, responsible for providing the persistence of the data required and
generated by the RCM.

• Gateway package, responsible for providing routing for the requests received in the
HTTPS port to the frontend package and other side services. Besides, it is also
responsible of providing and maintaining the HTTPS certificates negotiated with online

29 https://www.jhipster.tech/microservices-architecture/
30 https://flask.palletsprojects.com/en/3.0.x/
31 https://git.code.tecnalia.com/emerald/public/components/rcm/backend
32 https://git.code.tecnalia.com/emerald/public/components/rcm/converter
33 https://git.code.tecnalia.com/emerald/public/components/rcm/frontend
34 https://mariadb.com/

http://www.emerald-he.eu/
https://www.jhipster.tech/microservices-architecture/
https://flask.palletsprojects.com/en/3.0.x/
https://git.code.tecnalia.com/emerald/public/components/rcm/backend
https://git.code.tecnalia.com/emerald/public/components/rcm/converter
https://git.code.tecnalia.com/emerald/public/components/rcm/frontend

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 51 of 76

www.emerald-he.eu

certificate authorities such as let’s encrypt35. For this purpose, RCM uses state of the
practice components:

o Traefik36 in the local development environment.
o Nginx37 ingress + Certmanager in the integration environment.

• Keycloak38 package, responsible of provisioning of the identification service for the
usage of the RCM service.

Figure 23. Repository components (green boxes) and auxiliary elements

The usage of state of the practice components requires the implementation of configurations
components to prepare those generic services with the required information for the RCM:

• mariadb-setup-dbs package, responsible of creating the databases required by the RCM
main subcomponents.

• mariadb-setup-db package, responsible of adding the initial information to the
databases to have some initial content in the RCM main subcomponents.

• consul-config-loader package, responsible of adding the configuration properties
required by the RCM main subcomponents.

• keycloak-setup-realms package, responsible of creating the emerald realm in local
development environments.

• keycloak-setup-realm package, responsible of adding the required configuration for the
RCM on keycloak.

35 https://letsencrypt.org/
36 https://traefik.io/
37 https://nginx.org/
38 https://www.keycloak.org

http://www.emerald-he.eu/
https://letsencrypt.org/
https://traefik.io/
https://www.keycloak.org/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 52 of 76

www.emerald-he.eu

The code in charge of starting and configuring these last sets of components (the ones that
provide the side services and the ones that configure them) are contained in the composition
repositories. The main composition repository is the CaaS Framework39 that will be released
later in the project. Besides, in the case of RCM we have a local composition for development
purposes40. This composition relays in docker compose technology because it is easier to be used
in an isolated way.

8.2.1.1 Backend

The Backend subcomponent is divided into several subpackages. Being composed of Java
classes, each of these subpackages has its main purpose and context within the prototype as a
whole. They are the following:

• logging: This package consists of the LoggingAspect.java class that defines the aspect
for logging execution of Spring service and repository components.

• client: This package consists of the UserFeignClientInterceptor.javaclass that
implements RequestInterceptor.java. This class checks and adds a JWT token to the
request header.

• config: This package contains all the classes related to configuration purposes.

• domain: This package contains data model classes.

• repository: This package contains Spring Data SQL repository classes.

• security: This package contains Spring Security related classes for security
management.

• service: This package contains backend services for CRUD operations and other
requirements needed.

• web: This package contains classes to expose backend rest end points.

8.2.1.1 Converter

This package, as a REST API developed in Python – Flask, requires the installation of the following
packages as dependencies:

• cryptography (v3.3): This package provides cryptographic recipes and primitives.

• Flask (v2.0.0): This package consists of a lightweight application framework to expose
the component as a REST API.

• Flask-JWT-Extended (v4.4.1): This package provides JSON Web Tokens support to the
previous package.

• jsonschema (v4.21.1): This package allows to validate JSON objects.

• pymysql (v1.1.0): This package is used to manage the internal database.

• python-dateutil (v2.9.0): This package consists of an extension of the basic datetime
package.

• pytz (v2024.1): This package allows accurate and cross platform time zone calculations.

• Werkzeug (v2.2.2): This package is a comprehensive WSGI web application library.

8.2.1.2 Development Frontend

The Frontend subcomponent is divided into several subpackages, including web resources and
Java packages.

The web is implemented with Angular technology and includes several packages:

39 https://git.code.tecnalia.com/emerald/public/caas-framework
40 https://git.code.tecnalia.com/emerald/public/components/rcm/docker-compose-rcm

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/caas-framework
https://git.code.tecnalia.com/emerald/public/components/rcm/docker-compose-rcm

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 53 of 76

www.emerald-he.eu

• admin: This package includes admin focused features such as health-checks, logs, or
metrics.

• config: This package manages the gathering of the config of the frontend to adapt to
different environments.

• core: This package includes core functionalities such as authentication management or
error managements.

• entities: This package is the most important part as it contains the frontends to manage
the resources of the RCM.

• home: This package contains the welcome page related assets.

• layout: This package contains elements to customize the look and feel of the frontend
to different environments.

• Login: This package contains login related assets.

• shared: This package contains utility functionalities to be used by the previous elements.
It includes functions to manage dates, pagination, language, etc.

The java part provides logic to manage users, roles and access to the RCM backend assets. It is
organized in a similar way to the backend.

• logging: This package consists of the LoggingAspect.java class that defines the aspect
for logging execution of Spring service and repository components.

• client: This package consists of the UserFeignClientInterceptor.java class that
implements RequestInterceptor.java. This class checks and adds a JWT token to the
request header.

• config: This package contains all the classes related to configuration purposes.

• domain: This package contains data model classes.

• repository: This package contains Spring Data SQL repository classes.

• security: This package contains Spring Security related classes for security management.

• service: This package contains frontend services for CRUD operations and other
requirements needed.

• web: This package contains classes to expose frontend rest end points.

8.2.2 Installation

The RCM has been developed to be used in a container-based environment. For the installation
we consider two scenarios:

1. Development: This scenario is focussed on the coding and testing of the RCM on the
developer side independently from the integration platform status.

2. Integration: This scenario is focussed on the provision of the CaaS Framework as a single
solution.

8.2.2.1 Installation in the Development environment

This installation is defined by the use of docker compose technology, which provides several
advantages:

• It can be run in the development computer. This reduces the need to acquire and
configure external servers saving time and money.

• It allows to instantiate additional packages (MariaDB, keycloak, gateway …) allowing to
identify and debug issues that will appear in the integration environment saving time
and dependencies.

• It allows to prepare automatic configuration procedures for these additional services
saving time during deployment and providing replicability.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 54 of 76

www.emerald-he.eu

• It allows to easily destroy and create the RCM allowing to simulate migration scenarios
which are expected to happen during the life of the project.

These are the steps to install and execute the RCM in a development environment:

1) Fulfil these few requirements:

• The computer should have docker and git installed.

• The computer should have a traefik with certificates configured in a custom network
called traefik_network

• SERVER_HOST variable pointing to the name of the host that resolves the IP address of
the machine. E.g., 192.168.56.5.nip.io

• Alternatively, an ADMIN_PASSWORD variable to overwrite the default
ADMIN_PASSWORD specified in the .env.

2) Clone the repository:

git clone --recursive
https://git.code.tecnalia.com/emerald/public/components/rcm/docker-
compose-rcm

3) Later, to use the docker compose we have several options depending on what we require
to do. The first purpose could be to check the RCM using the development frontend.

docker compose -d

Once docker-compose is successfully deployed, and assuming the following value for
SERVER_HOST (192.168.56.5.nip.io), we will be able to access the Repository services at:

https://rcm.192.168.56.5.nip.io Repository

Other services that are deployed to help in the development phase are a consul, MariaDB,
keycloak.

https://adminer.192.168.56.5.nip.io MariaDB.
https://consul.192.168.56.5.nip.io Consul.
https://keycloak.192.168.56.5.nip.io keycloak.

8.2.2.2 Installation in the Integration environment

The installation in the integration environment implies the deployment of the CaaS framework,
which involves three fundamental steps:

1) To install the development environment there are few requirements:

• Create/adquire a Kubernetes cluster or obtain access to existing one.

• Get the cloud.yaml to use kubctl

2) Clone the repository:

git clone https://git.code.tecnalia.com/emerald/public/caas-framework

3) Later, use kubectl to start the CaaS framework that includes the RCM.

kustomize build . | envsubst | kubectl apply -f-

Once docker-compose is successfully deployed, and assuming the following value for hostname
(project.domain), we will be able to access the Repository services at:

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/rcm/docker-compose-rcm
https://git.code.tecnalia.com/emerald/public/components/rcm/docker-compose-rcm
https://git.code.tecnalia.com/emerald/public/caas-framework

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 55 of 76

www.emerald-he.eu

https://rcm.project.domain Repository

Other services that are deployed to help in the development phase are a Consul, MariaDB, and
keycloak.

https://adminer.project.domain MariaDB
https://consul.project.domain Consul
https://keycloak.project.domain keycloak

8.2.3 Instructions for use

A graphical user interface (GUI) is needed by the repository to access and edit the various
entities stored in the database. For every primary entity, a CRUD API
(Create/Retrieve/Update/Delete) has been created; however, the activities that may be
performed can vary according to the role of the user.

The GUI lets the user interact with the security schemes by letting them utilize buttons, links,
and filters, among other graphic components, on different screens. Typical tasks could be, for
example, to show the metrics associated with a specific control; to select the controls of a
specific category; or to view which controls in a scheme correspond to a particular assurance
level.

The GUI that interacts with the RCM will be integrated in the EMERALD UI component. At the
time of writing, it has not been yet developed, but some paper mock ups and digital mock ups
have been designed in D4.3 [11] that allow access the functionality of the RCM. This section
presents some of the available mock ups, showing the principal interactions with the RCM
interface. Most of the screens are dedicated to navigation though a scheme for informative
purposes. In a future, specific mock-ups will also be developed to handle the EUCS
questionnaire.

The user accesses the RCM by clicking the “Certification Schemes” menu option in the in the
EMERALD home page (see Figure 24).

Figure 24. Home page of the EMERALD framework (D4.3 [11])

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 56 of 76

www.emerald-he.eu

When entering the “Certification Schemes” area, a list of all available schemes is presented, as
shown in Figure 25.

Figure 25. List of schemas page (D4.3 [11])

When clicking on the “Upload Scheme” button, a window opens that allows to upload a new
scheme selecting CSV or OSCAL files (see Figure 26).

Figure 26. Upload new scheme page (D4.3 [11])

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 57 of 76

www.emerald-he.eu

When clicking on the scheme title or on the “view” button in Figure 25, the details of the
respective scheme are shown, as can be seen in Figure 27. Here, the name, code and description
of each category is shown.

Figure 27. Browse scheme (EUCS categories) (D4.3 [11])

When clicking on one of the high-level categories, a sub-list with its sub-categories are open up
below, in a hierarchical way, as presented in Figure 28.

Figure 28. Browse sub-categories of the EUCS scheme (D4.3 [11])

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 58 of 76

www.emerald-he.eu

When clicking on one of the categories, the controls that belong to the category are shown, as
depicted in Figure 29. For each control, the code, description, assurance level and the assigned
metrics are shown.

Figure 29. Controls of an EUCS scheme category (D4.3 [11])

8.2.4 Licensing information

The RCM component is offered under Apache 2.0 license. The license files and more detailed
information can be found in the EMERALD Public GitLab repository41.

8.2.5 Download

The code is available at the public GitLab repository of the EMERALD project41.

41 https://git.code.tecnalia.com/emerald/public/components/rcm

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 59 of 76

www.emerald-he.eu

9 Trustworthiness System

The Trustworthiness System (TWS) component provides trustworthiness, fairness and
transparency to the evidence and assessment results stored in EMERALD, as the integrity and
authenticity of the information is guaranteed.

9.1 Implementation

The implementation of the TWS component is based in the MEDINA component MEDINA
Evidence Trustworthiness Management System [18]. This foundational tool was the baseline for
elaborating the specifications of the TWS, that are documented in D3.1 [2]. This section presents
the functional description and technical description of this component.

9.1.1 Functional description

Blockchain technology is increasingly recognized as a reliable solution for providing
trustworthiness, offering a transparent, secure, and cost-effective method for maintaining audit
trails. By decentralizing data across a distributed network, Blockchain removes the need for a
central authority to manage records. It also ensures the immutability of recorded information,
as data is replicated across all the nodes of the Blockchain network. Additionally, each piece of
information on the Blockchain is digitally signed by its creator, allowing for traceability.

Despite these important advantages—integrity, decentralization, and non-repudiation—
Blockchain’s adoption for audit trails remains still limited due to its user-unfriendly nature.
Currently, interacting with Blockchain requires a client, which is not usually available on user
systems. Therefore, a graphical and web-based tool is recommended to make Blockchain
accessible and transparent for external users, such as auditors. This tool would provide a user-
friendly interface to verify the integrity of the information recorded on the Blockchain, including
evidence and assessment results. With proper authentication, anyone could access this
information without needing a Blockchain client.

Thus, the TWS offers a secure way for EMERALD to maintain an audit trail of evidence and
assessment results. It provides the following functionalities:

• It allows and facilitates the provision of required audit information from the Assessment
component in EMERALD to the Blockchain.

• It ensures long-term information recording, leveraging Blockchain’s inherent
advantages like integrity, decentralization, and authenticity.

• It makes use of a general-purpose semi-public Blockchain infrastructure, which supports
services in accordance with European regulations.

• It allows external users to access EMERALD audited information in a graphical and user-
friendly way.

Table 16 shows the functional requirements satisfied by the current version of the TWS, as
documented in D3.1 [2], and updates the status of their implementation in the current
prototype in M12.

Table 16. TWS Functional Requirements

Req. ID Description Priority Milestone Progress

TWS.01 Provide a tool allowing the verification of evidence
integrity without needing to store the evidence itself
(for confidentiality reasons).

Must MS2
(M12)

75% (*)

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 60 of 76

www.emerald-he.eu

Req. ID Description Priority Milestone Progress

TWS.02 Provide a tool allowing the verification of assessment
results integrity without needing to store the result
itself (for confidentiality reasons).

Must MS2
(M12)

75% (*)

TWS.03 The integrity validation of evidence and assessment
results must be done through REST API or graphical
interface (EMERALD UI).

Must MS5
(M24)

50%

TWS.04 The TWS must be based on a real Blockchain network,
with multiple nodes and multiple organizations to
guarantee suitable decentralization and governance of
the Blockchain network.

Must MS5
(M24)

5%

(*) Note that TWS.01 and TWS.02 requirements should have been fully completed by M12.
However, due to a high delay on the feedback in the EBSI early adopters submission (see Section
9.1.2.1.1 for further details), although the current progress is almost completed, it is not totally
completed as a new Blockchain ecosystem needs to be selected, and the functionalities of TWS.01
and TWS.02 also need to be adapted to the new Blockchain ecosystem.

9.1.1.1 Fitting into overall EMERALD Architecture

TWS is one of the components of the EMERALD architecture. Figure 30 shows the interaction
with other components in the EMERALD framework.

Figure 30. Fitting of the TWS with other components in EMERALD architecture

The main interactions of the TWS with the EMERALD components are as follows:

• Clouditor-Assessment: The interaction with this component occurs in two ways:
o The Assessment component provides information related to evidence and

assessment results to be recorded on the Blockchain.
o The automatic verification service requests the current values of evidence and

assessment results stored in EMERALD’s internal evidence storage to validate
their integrity against the information previously recorded on the Blockchain.

• EmeraldUI: The graphical interface of the TWS automatic verification service is
integrated into the EMERALD UI, allowing auditors to easily verify the trustworthiness
of evidence and assessment results, and determine their reliability.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 61 of 76

www.emerald-he.eu

9.1.2 Technical description

This section is dedicated to describing the technical specification of the TWS component. First,
the main architecture of the prototype is presented, including all its sub-components. Next, the
technical specifications of the developed system are described. The section finishes with the
description of the published APIs.

9.1.2.1 Prototype architecture

Figure 31 shows the architecture of the Blockchain-based TWS [2].

Figure 31. TWS architecture

The architecture is composed of five main elements:

• Blockchain Network: A general-purpose semi-public Blockchain infrastructure will be
considered for the TWS. From MEDINA, a privately deployed Quorum network was
considered as a proof of concept. However, EMERALD plans to make a production
deployment in a real Blockchain infrastructure. Initially, the European Blockchain
Service Infrastructure (EBSI) was considered. However, EBSI is currently in the process
of transition to a new legal entity and the participation in the early adopters’
programme that EMERALD requested at the beginning of the project is currently close
(more details in Section 9.1.2.1.1). Other options are currently under analysis by the
EMERALD partners.

• Smart Contracts: The auditing functionalities of the TWS are implemented through
Smart Contracts to be deployed on the Blockchain network. These Smart Contracts
handle the registration of data (evidence and assessment results) on the Blockchain and
its consumption for integrity validation. They also generate Blockchain-based events to
feed the Blockchain viewer and allow user-friendly access to the information recorded
on the TWS.

• Blockchain Client: Each assessment component of the EMERALD architecture will have
a Blockchain client to interact with the Blockchain and the Smart Contracts, managing
wallets and generating transactions for registering and consumption operations.

• Blockchain Viewer: This subcomponent listens to Blockchain events from the Smart
Contracts, normalizes and categorizes the details for display on a dashboard. It allows
external users to access information recorded on the Blockchain without needing a
Blockchain client.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 62 of 76

www.emerald-he.eu

• Automatic Verification Service: This tool automatically checks the validity of currently
available evidence and assessment results in EMERALD in comparison to the
information previously recorded on the Blockchain. It provides auditors a user-friendly
interface integrated into the EMERALD UI for easy data integrity verification.

9.1.2.1.1 Components description

The following paragraphs describes in more detail the TWS components.

Blockchain Network

The TWS is based on a Quorum network, based on the implementation from MEDINA. However,
different types of Blockchain networks are currently under consideration in order to be able to
deploy the TWS in a general-purpose semi-public-permissioned Blockchain ecosystem.

The first idea was to deploy the TWS in the European Blockchain Services Infrastructure (EBSI)
[22]. EBSI is a Blockchain network of distributed nodes across Europe. It is the first EU-wide
Blockchain infrastructure, driven by the public sector to support cross-border applications such
as traceability, verifiable credentials, trusted data exchange (as it could be the case of the TWS)
or IP management across multiple domains. Additionally, EBSI considers Hyperledger Besu42,
which is an Ethereum client suitable for both public and private permissioned Blockchain
network use cases. It is also EVM (Ethereum Virtual Machine) compatible, which signifies that
EBSI can support the deployment of Smart Contracts written in Solidity43, as it is the case of the
TWS. For these reasons, EBSI was considered a suitable Blockchain ecosystem to deploy the
TWS.

Although EBSI is still under development, it offers an early adopters’ programme where some
pilot projects can be launched. EMERALD made a request to take part in the early adopters’
programme (contribution ID 64e2738a-0a70-4388-888f-ef108424edb3). However, in
September 2024, the request was closed. The reason EBSI provided is literally the following one:

Unfortunately, the Early Adopters Programme (EAP) is now closed and therefore we

are not onboarding any projects to the programme at this moment. We will be in

contact with you in case of any developments regarding the programme.

EBSI is evolving and in May 2024 a group of member states came together and created

the Europeum-EDIC, a new legal entity which will enable EBSI to go into production

and deepen the collaboration on Web3 technologies. EBSI is currently in the process of

transition to this legal entity who will oversee the EAP. You can read more about the

EDIC's goals and how they align with the programme here.

As a result, other alternatives have recently started to be considered for the TWS. The two main
requirements for the Blockchain ecosystem to be considered are:

• It should be a general-purpose public-permissioned ecosystem.

• It must be compatible with the current implementation of the TWS, based on Solidity.
Moreover, it is highly recommended to consider Hyperledger Besu to keep

42 https://besu.hyperledger.org/
43 https://soliditylang.org/

http://www.emerald-he.eu/
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fec.europa.eu%2Fdigital-building-blocks%2Fsites%2Fdisplay%2FEBSI%2FEBSI%2Bwill%2Bevolve%2Bwith%2BEUROPEUM%253A%2Ban%2BEDIC%2Bunder%2Bthe%2Bcontrol%2Bof%2Bmember%2Bstates&data=05%7C02%7Ccristina.regueiro%40tecnalia.com%7C9d44192fa8f84911989108dcd3065078%7Cb235b67cbf484671b1a1da444c1bef66%7C0%7C0%7C638617271364616362%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=HBabWgb4bWfXZZZbgaYB1Q8jD250UDiN1M9GXxdHKRk%3D&reserved=0

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 63 of 76

www.emerald-he.eu

compatibility with EBSI in case a European-wide deployment in such an ecosystem is
possible in the future.

Alastria [23] is the option being further analysed. Alastria is the first Spanish and one of the
world’s largest public-permissioned multisector blockchain platforms, bringing together
companies, academia, and public administration. It includes different Blockchain networks,
including a solution based on Hyperledger Besu. More details will be provided in the next
versions of the component.

Smart Contracts

The Smart Contracts deployed on the Blockchain network encompass the functionalities of TWS
requiring high levels of security, including functionalities for the different users. There are two
types of users for the TWS:

• Administrators: These users have the authority to authorize or de-authorize access to
the TWS. They can also appoint new administrators or remove existing ones. By default,
TECNALIA, as component owner, is the administrator of the TWS. However, when the
component is deployed on the pilots’ premises, they should take this role.

• Authorized users: They refer to the assessment components which are authorized by an
existing administrator to use the TWS. What is collected by each assessment component
can only be accessed by its owner. Although the Blockchain network is shared among
several authorized users, each one can only access information related to his own
registered assessment component.

Each user (administrators and authorized users) is identified in the TWS through a Blockchain
address.

Administrators’ Functionalities

Administrators have exclusive access to general information about the current status of the
TWS. Only administrators can perform actions related to the user management.

• Register a new administrator.

• Remove an existing administrator.

• Check if a specific user is an administrator.

• Retrieve the total number of administrators in the system.

• Authorize a new user.

• De-authorize an existing user.

• Check if a specific user is authorized in the system.

• Retrieve the total number of authorized users in the system.

• Obtain all registered user IDs (administrators can only see the user ID, not the
information provided by the user itself).

Authorized users’ Functionalities

If users are not authorized, they will not be able to access the system due to restrictions enforced
by the Smart Contracts design. To gain access, they must submit a “registration request” to
notify administrators of their intent to use the TWS. This request should include the user
identifier (Blockchain address). Upon receiving the notification, administrators will manually
review the request to determine if the user should be authorized.

Once authorized, they can register assessment components, providing the following
information:

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 64 of 76

www.emerald-he.eu

• id: This is the internal ID used to identify the assessment component within TWS. It is
automatically generated by the Smart Contract based on the authorized user unique
Blockchain address.

• owner: This refers to the authorized user Blockchain address who has registered the
assessment component. It is automatically obtained by the Smart Contract.

• timestamp: This indicates the timestamp in seconds since the epoch of the assessment
component registration process. It is automatically obtained by the Smart Contract.

Once an assessment component is registered, the functionalities of the authorized user are:

• Retrieving the registered assessment component ID.

• Retrieving the associated assessment component owner (authorized user) ID.

• Retrieving the registered assessment component registration timestamp.

• Adding new evidence information following the trustworthy evidence data model
shown in Figure 32. This data model is the first version that could be updated as required
in the following versions of the TWS.

• Retrieving specific evidence information.

• Retrieving all added evidence IDs associated to a given assessment component.

• Adding new assessment result information following the trustworthy assessment result
data model shown in Figure 32. This data model is the first version that could be updated
as required in the following versions of the TWS.

• Retrieving specific assessment result information.

• Retrieving all added assessment result IDs associated to a given assessment component.

• Checking the integrity validity of a specific evidence.

• Checking the integrity validity of a specific assessment result.

• Checking the integrity validity of a specific assessment compliance result.

Figure 32. TWS Data model

Events Generation

Every time an operation is executed in the Smart Contracts, a Blockchain-based event is
generated to feed the Blockchain viewer. Initially, the events to be generated include (but are
not limited to):

• Registration of new administrators.

• Removal of an existing administrator.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 65 of 76

www.emerald-he.eu

• Authorization of a new user in the system.

• De-authorization of an existing authorized user in the system.

• Registration of a new assessment component by its owner (authorized user).

• Registration of new evidence information.

• Registration of new assessment result information.

In this first version, there are no events related to reading/retrieving actions.

Blockchain client

The functionalities of the EMERALD TWS are implemented through Smart Contracts that need
to be invoked by a Blockchain client. In the initial version, the main functionalities of the
Blockchain client are as follows:

Blockchain Account Management

Each assessment component interacting with the TWS requires a Blockchain account. This
account consists of a Blockchain address, which uniquely identifies the user within the
Blockchain network, and an associated private key, known only by the assessment component
and securely kept. The Blockchain account is securely managed by means of a “wallet” included
in the Blockchain client, simplifying user interaction with the Blockchain network.

The functionalities available in the Blockchain client related to Blockchain accounts include:

• Create a new Blockchain account: Automatically generates a new Blockchain address
and its associated private key.

• Get the address associated with a specific private key: Obtains the address from a
private key; for validation purposes.

• Add a specific Blockchain account to the Blockchain client wallet: The private key is
needed to store the Blockchain account in the internal wallet of the Blockchain client.
Initially, only one account can be stored.

• Get the Blockchain address added to the wallet: Retrieves the Blockchain address
information previously added to the Blockchain wallet for validation purposes.

• Request authorization: Ask the EMERALD administrators to provide rights for a specific
Blockchain address (associated with a specific assessment component) to use the TWS
(authorization functionality from administrators).

Blockchain Transactions Creation

The assessment component needs to generate Blockchain transactions to send them to the
Blockchain and be understood by the Smart Contracts deployed on it. The Blockchain client
automatically creates the required Blockchain transactions for executing all functionalities
available in the EMERALD TWS Smart Contracts, using the Web3.js library internally.

API REST for External Interaction

The Blockchain client exposes an API REST to allow assessment components to easily interact
with the Blockchain client for their account management as well as for the provision of evidence
and assessment results to be recorded on the TWS.

Additionally, the automatic verification service described in Section 9.1.2.1.1 interacts with the
Blockchain client API to obtain the evidence and assessment results recorded in the Blockchain,
necessary for the automatic verification of the integrity of the current evidence and assessment
results available at EMERALD at a given time.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 66 of 76

www.emerald-he.eu

API description

All API endpoints are listed below with a brief explanation:

• Account: This endpoint is related to the Blockchain account (address and private key)
management (create, add account to wallet, get account from wallet, get address from
private key).

• Registration: This endpoint refers to an authorization request in the TWS.

• Admin: This endpoint refers to the TWS management as administrator. Administrators
can be created, updated, listed and removed; users can be authorized or deauthorized;
the total number of administrators and authorized users can be listed; the registered
assessment components can be listed.

• Assessments: This endpoint refers to the management of the assessment results proofs
of integrity (register, get, check).

• Evidence: This endpoint refers to the management of the evidence proofs of integrity
(register, get, check).

Blockchain viewer

The Blockchain viewer monitors Blockchain-based events generated by the Smart Contracts,
providing notifications about new users in the system, as well as new evidence or assessment
results recorded in the TWS. It offers a mechanism for external users (such as auditors or security
engineers) to manually verify evidence and assessment results recorded on the
Blockchain. Figure 33 illustrates the internal architecture of the Blockchain viewer.

Figure 33. TWS Blockchain viewer architecture

The Blockchain viewer consists of five components:

• Eventeum44: This component bridges the Smart Contracts deployed in the Blockchain
with the Blockchain Viewer. As explained in Section 9.1.2.1.1, Smart Contracts
automatically generate Blockchain events that Eventeum listens to. To listen to the
events, it is necessary to subscribe to events from specific Smart Contract addresses
(each Smart Contract has a unique Blockchain address). Additionally, the format of the
specific events must be indicated to Eventeum (event id, parameters order, parameters
type).

• Apache Kafka45: This intermediate platform distributes Blockchain events between
Eventeum and Logstash. Kafka uses message queues to provide asynchronous
communication, meaning the sender (Eventeum) and the receiver (Logstash) do not
need to interact with the message queue simultaneously.

44 https://github.com/eventeum/eventeum
45 https://kafka.apache.org/

http://www.emerald-he.eu/
https://github.com/eventeum/eventeum
https://kafka.apache.org/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 67 of 76

www.emerald-he.eu

• Logstash46: A log management tool used in the Blockchain viewer to collect all events
received from Eventeum via Kafka queues. It normalizes these events into a common
format before routing them to Elasticsearch for processing.

• Elasticsearch47: A distributed search and analysis engine that stores, indexes, and
processes the information from the events. The information stored in Elasticsearch can
be recreated from scratch in case of a security incident, ensuring a fully reliable source
of information.

• Kibana48: Kibana is a graphical interface that displays information from Elasticsearch in
real time through customized dashboards. Access to Kibana dashboards requires
authentication. Different roles need to be created to access different types of
information in the TWS. For example, administrators should have access to all registered
evidence and assessment results from different assessment components. In contrast,
each authorized assessment component should have limited access only to its
associated evidence and assessment results to prevent information disclosure.
Additionally, different dashboards will need to be created for the different roles. For
example, Figure 34 and Figure 35 show two examples of dashboards for administrators
and assessment components. These dashboards are just an example and will be updated
for the next version of the TWS according to the EMERALD requirements.

Figure 34. TWS Blockchain viewer dashboard for administrators

46 https://www.elastic.co/es/logstash
47 https://www.elastic.co/es/elasticsearch
48 https://www.elastic.co/es/kibana

http://www.emerald-he.eu/
https://www.elastic.co/es/logstash
https://www.elastic.co/es/elasticsearch
https://www.elastic.co/es/kibana

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 68 of 76

www.emerald-he.eu

Figure 35. TWS Blockchain viewer dashboard for assessment components

Automatic verification service

Auditors require an automated method to verify the integrity of evidence and assessment
results, in addition to the manual access to hashes and additional information offered through
the Blockchain viewer. The automatic verification service meets this need by offering a graphical
tool that validates evidence and assessment results from the EMERALD evidence storage against
Blockchain records. Thus, this service ensures the integrity of evidence and assessment results.
The verification service will be integrated in the EMERALD UI allowing automatic integrity
verifications. More details about the way to be integrated are provided in D4.3 [11].

9.1.2.2 Technical specifications

The TWS is a software solution deployable at both Windows and Linux operating systems as long
as they have hardware virtualization and docker support. It has been implemented using Solidity
for the Smart Contracts, Javascript for the Blockchain client, React and Nodejs for the verification
service and Go and Scripting for the Blockchain monitor.

9.2 Delivery and usage

This section describes the information needed for the installation and use of the TWS. Besides,
it also details the licensing information and related packages and repositories.

9.2.1 Package information

The TWS is composed of the following packages:

• TWS.sol and Assessment.sol. These are the Smart Contracts that need to be deployed
on the selected Blockchain network.

• One docker of the Blockchain client, to be deployed on the EMERALD infrastructure
associated to the assessment component.

• Two dockers of the verification service (one for the backend, and one for the frontend),
to be deployed on the EMERALD infrastructure.

• Eight dockers of the Blockchain viewer (Oauth2 proxy, eventeum, mongodb, zookeeper,
kafka, Logstash, Elasticsearch, kibana) to be deployed on the EMERALD infrastructure
(or as a service from other infrastructure).

9.2.2 Installation

The deployment of the Smart Contract will depend on the specific Blockchain network to be
considered for the TWS.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 69 of 76

www.emerald-he.eu

For the rest of the services, as they have been dockerized, the installation is as follows:

• docker run {docker_image}, for the Blockchain client and the verification service.

• docker-compose up, for the Blockchain monitor (as a docker-compose.yml file has been
created).

9.2.3 Instructions for use

Blockchain client

The Assessment component from EMERALD is the component that uses the Blockchain client to
provide evidence and assessment results to the TWS. Once the Docker image is running (after
following the installation steps in Section 9.2.2), the user needs to:

1. Generate and Add a Blockchain Account

Generate a Blockchain account and add it to the Blockchain wallet (inside the Blockchain client)
through a POST request to the /client/account endpoint and a POST request to the
/client/wallet endpoint of the Blockchain client API, respectively.

2. Request Authorization:

Request authorization for the user through a POST request to the /client/registration
endpoint of the Blockchain client API. The administrators (initially, TECNALIA) will authorize the
Blockchain account (authorized user).

3. Register the assessment component:

Once the user is authorized, register the assessment component through a POST request to the
/client/assessment endpoint. From this point, all authorized users’ functionalities from the
TWS can be executed. Refer to Section 9.1.2.1.1 for available functionalities: providing evidence
or assessment results, retrieving the list of registered evidence or assessment result IDs,
retrieving information of a specific evidence or assessment result ID, and checking the integrity
of specific evidence or assessment results.

Blockchain viewer

In EMERALD, the verification service will be integrated in the EMERALD UI. There are two steps
in the use of the TWS verification service:

1. Set-up of the component

It is necessary to define when and how often the TWS should be automatically updated and/or
on demand, as shown in Figure 36.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 70 of 76

www.emerald-he.eu

Figure 36. TWS set-up (D4.3 [11])

2. Integrity check

The status of the integrity check is always visible at the upper right side of the EMERALD UI.

• If the integrity check of all evidence and assessment results is ok, the TWS status symbol
is presented in green as shown in Figure 37.

Figure 37. Correct integrity verification

• If the integrity check is not ok, the TWS status symbol is presented in red as shown in
Figure 38. Additionally, it is possible to get a report with the details of the modified
evidence as shown in Figure 39.

Figure 38. Incorrect integrity verification

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 71 of 76

www.emerald-he.eu

Figure 39. Integrity verification details (D4.3 [11])

More details on the graphical interface are provided in D4.3 [11].

9.2.4 Licensing information

Proprietary. Copyright by TECNALIA.

9.2.5 Download

This section is not applicable as TECNALIA owns a proprietary license, so no source code can be
provided.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 72 of 76

www.emerald-he.eu

10 Conclusions

In this deliverable, we have provided a comprehensive overview of the initial implementation of
the WP3 components within the EMERALD project. This includes detailed functional and
technical descriptions, delivery and usage instructions, and associated documentation for each
component: Clouditor-Orchestrator, Clouditor-Assessment, Clouditor-Evidence Store, Mapping
Assistant for Regulations with Intelligence (MARI), Clouditor-Evaluation, Repository of Controls
and Metrics (RCM), and Trustworthiness System (TWS).

The primary goal of this deliverable is to document the implementation of the WP3 components,
ensuring that they are effectively integrated and operational within the EMERALD framework.
By achieving this, we aim to facilitate the development of a Certification-as-a-Service (CaaS)
framework for continuous certification of harmonized cybersecurity schemes.

The key contributions of this deliverable include the initial implementation of the WP3
components, addressing key results such as CERTGRAPH (KR2), OPTIMA (KR3), MULTICERT
(KR4), and INTEROP (KR7). This progress is measured using the key performance indicators (KPIs)
defined in the DoA [1].

Looking ahead, the next steps involve further development and refinement of the WP3
components. This includes the interim integration of the components within the overall
EMERALD system (D3.5 [3], M15), thereby completing the first iteration of concepts,
implementation and integration of WP3 components. Following this, the final versions of the
concepts (D3.2 [4], M18), implementation (D3.4 [5], M24) and integration (D3.6 [6], M27) will
be completed. These steps will ensure continuous improvement and alignment with the
project's objectives, ultimately enhancing the robustness and effectiveness of the EMERALD
framework.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 73 of 76

www.emerald-he.eu

11 References

[1] EMERALD Consortium, “EMERALD - Annex 1- Description of Action - GA101120688,” 2022.

[2] EMERALD Consortium, “D3.1 Evidence assessment and Certification–Concepts-v1,” 2024.

[3] EMERALD Consortium, “D3.5 Evidence assessment and Certification - Integration -v1,”
2025.

[4] EMERALD Consortium, “D3.2 Evidence assessment and Certification Concepts - v2,” 2025.

[5] EMERALD Consortium, “D3.4 Evidence Assessment and Certification - Implementation-
v2,” 2025.

[6] EMERALD Consortium, “D3.6 Evidence assessment and Certification - Integration- v2,”
2026.

[7] ENISA, “EUCS - Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed
October 2024].

[8] B. e. al., A Semantic Evidence-based Approach to Continuous Cloud Service Certification,
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 2023.

[9] MEDINA Consortium, “D3.6 Tools and techniques for collecting evidence of technical and
organisational measures - v3 (https://medina-project.eu/public-deliverables/),” 2023.

[10] MEDINA Consortium, “D4.3 Tools and techniques for the management and evaluation of
cloud security certifications-v3 (https://medina-project.eu/public-deliverables/),” 2023.

[11] EMERALD Consortium, “D4.3 User interaction and user experience concept–v1,” 2024.

[12] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage,” 2024.

[13] MEDINA Consortium, “D3.5 Tools and techniques for collecting evidence of technical and
organisational measures-v2 (https://medina-project.eu/public-deliverables/),” 2022.

[14] EMERALD Consortium, “D2.2 Source Evidence Estractor -v1,” 2024.

[15] EMERALD Consortium, “D2.4 AMOE-v1,” 2024.

[16] EMERALD Consortium, “D2.6 ML model certification-v1,” 2024.

[17] EMERALD Consortium, “D2.8 Runtime evidence extractor - v1,” 2024.

[18] MEDINA Consortium, “D3.3 Tools and techniques for the management of trustworthy
evidence-v3 (https://medina-project.eu/public-deliverables/),” 2023.

[19] MEDINA Consortium, “D2.3 Specification of the Cloud Security Certification Language-v3
(https://medina-project.eu/public-deliverables/),” 2023.

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 74 of 76

www.emerald-he.eu

[20] EMERALD Consortium, “D1.3 EMERALD solution architecture-v1,” 2024.

[21] MEDINA Consortium, “D2.2 Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v2 (https://medina-project.eu/public-
deliverables/),” 2023.

[22] European Comission, “European Blockchain Services Infrastructure (EBSI),” 2024. [Online].
Available: https://ec.europa.eu/digital-building-blocks/sites/display/EBSI/Home.
[Accessed 10 2024].

[23] Alastria, “Where Blockchain happens,” 2024. [Online]. Available:
https://alastria.io/en/home/. [Accessed 10 2024].

http://www.emerald-he.eu/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 75 of 76

www.emerald-he.eu

APPENDIX A: Examination of Graph DB Engines

The following graph databases are potential candidates for using in the EMERALD framework,
providing Go compatibility and including appropriate licences (e.g. Apache 2.0):

ArangoDB (https://arangodb.com/)
Apache AGE (https://age.apache.org/)
Dgraph (https://dgraph.io/)
Memgraph (https://memgraph.com/)
Nebula (https://www.nebula-graph.io/)
Neo4j (https://neo4j.com/)
dylanpaulus (https://www.dylanpaulus.com/posts/postgres-is-a-graph-database/)
RedisGraph (https://redis.io/docs/stack/graph/)
SurrealDB (https://surrealdb.com/)
TinkerGraph (https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-
gremlin)
ArcadeDB (https://arcadedb.com/)

The following graph databases will be not considered due to limitations either in the Go
compatibility or in the provided licence:

Aerospike (https://aerospike.com/)
Dedicated Cloud Services (e.g., https://azure.microsoft.com/services/cosmos-db or
https://aws.amazon.com/neptune/)
Janus Graph (https://janusgraph.org/)
GraphDB (https://www.ontotext.com/)
OrientDB (https://orientdb.org/)
Stardog (https://www.stardog.com/)
TigerGraph (https://www.tigergraph.com/)
Virtuoso (https://virtuoso.openlinksw.com/)
Fauna (https://fauna.com/)
Giraph (https://giraph.apache.org/)
AllegroGraph (https://allegrograph.com/)
Blazegraph (https://blazegraph.com/)
TypeDB (https://typedb.com/)
Graph Engine (https://www.graphengine.io/)
InfiniteGraph (https://objectivity.com/infinitegraph/)
Fluree (https://flur.ee/)
AnzoGraph (https://cambridgesemantics.com/anzograph/)
AgensGraph (https://bitnine.net/agensgraph/)
TerminusDB (https://terminusdb.com/)
FlockDB (https://github.com/twitter-archive/flockdb)
HyperGraphDB (https://hypergraphdb.org/)
Ultipa (https://www.ultipa.com/)
Apache HugeGraph (https://hugegraph.apache.org/)
Bangdb (https://bangdb.com/)
GraphBase (https://graphbase.ai/)
gStore (https://en.gstore.cn/)
TinkerGraph (https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-
gremlin)
Sparksee (https://www.sparsity-technologies.com/)
VelocityDB (https://velocitydb.com/)

http://www.emerald-he.eu/
https://arangodb.com/
https://age.apache.org/
https://dgraph.io/
https://memgraph.com/
https://www.nebula-graph.io/
https://neo4j.com/
https://www.dylanpaulus.com/posts/postgres-is-a-graph-database/
https://redis.io/docs/stack/graph/
https://surrealdb.com/
https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://arcadedb.com/
https://aerospike.com/
https://azure.microsoft.com/services/cosmos-db
https://aws.amazon.com/neptune/
https://janusgraph.org/
https://www.ontotext.com/
https://orientdb.org/
https://www.stardog.com/
https://www.tigergraph.com/
https://virtuoso.openlinksw.com/
https://fauna.com/
https://giraph.apache.org/
https://allegrograph.com/
https://blazegraph.com/
https://typedb.com/
https://www.graphengine.io/
https://objectivity.com/infinitegraph/
https://flur.ee/
https://cambridgesemantics.com/anzograph/
https://bitnine.net/agensgraph/
https://terminusdb.com/
https://github.com/twitter-archive/flockdb
https://hypergraphdb.org/
https://www.ultipa.com/
https://hugegraph.apache.org/
https://bangdb.com/
https://graphbase.ai/
https://en.gstore.cn/
https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://www.sparsity-technologies.com/
https://velocitydb.com/

DRAFT
D3.3 – Evidence assessment and Certification-
Implementation-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 76 of 76

www.emerald-he.eu

Transwarp StellarDB (https://www.transwarp.cn/en/product/stellardb)
Galaxybase (https://galaxybase.com/)
HGraphDB (https://github.com/rayokota/hgraphdb)
Kuzu (https://kuzudb.com/)

http://www.emerald-he.eu/
https://www.transwarp.cn/en/product/stellardb
https://galaxybase.com/
https://github.com/rayokota/hgraphdb
https://kuzudb.com/

	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Evidence assessment and integration components in the EMERALD architecture
	3 Clouditor-Orchestrator
	3.1 Implementation
	3.1.1 Functional description
	3.1.1.1 Fitting into overall EMERALD Architecture

	3.1.2 Technical description
	3.1.2.1 Prototype architecture
	3.1.2.1.1 Components description

	3.1.2.2 Technical specifications

	3.2 Delivery and usage
	3.2.1 Package information
	3.2.2 Installation
	3.2.3 Instructions for use
	3.2.4 Licensing information
	3.2.5 Download

	4 Clouditor-Assessment
	4.1 Implementation
	4.1.1 Functional description
	4.1.1.1 Fitting into overall EMERALD Architecture

	4.1.2 Technical description
	4.1.2.1 Prototype architecture
	4.1.2.1.1 Components description

	4.1.2.2 Technical specifications

	4.2 Delivery and usage
	4.2.1 Package information
	4.2.2 Installation
	4.2.3 Instructions for use
	4.2.4 Licensing information
	4.2.5 Download

	5 Clouditor-Evidence Store
	5.1 Implementation
	5.1.1 Functional description
	5.1.1.1 Fitting into overall EMERALD Architecture

	5.1.2 Technical description
	5.1.2.1 Prototype architecture
	5.1.2.1.1 Components description

	5.1.2.2 Technical specifications

	5.2 Delivery and usage
	5.2.1 Package information
	5.2.2 Installation
	5.2.3 Instructions for use
	5.2.4 Licensing information
	5.2.5 Download

	6 Mapping Assistant for Regulations with Intelligence (MARI)
	6.1 Implementation
	6.1.1 Functional description
	6.1.1.1 Fitting into overall EMERALD Architecture

	6.1.2 Technical description
	6.1.2.1 Prototype architecture
	6.1.2.2 Technical specifications

	6.2 Delivery and usage
	6.2.1 Package information
	6.2.2 Installation
	6.2.3 Instructions for use
	6.2.4 Licensing information
	6.2.5 Download

	7 Clouditor-Evaluation
	7.1 Implementation
	7.1.1 Functional description
	7.1.1.1 Fitting into overall EMERALD Architecture

	7.1.2 Technical description
	7.1.2.1 Prototype architecture
	7.1.2.1.1 Components description

	7.1.2.2 Technical specifications

	7.2 Delivery and usage
	7.2.1 Package information
	7.2.2 Installation
	7.2.3 Instructions for use
	7.2.4 Licensing information
	7.2.5 Download

	8 Repository of Controls and Metrics (RCM)
	8.1 Implementation
	8.1.1 Functional description
	8.1.1.1 Fitting into overall EMERALD Architecture

	8.1.2 Technical description
	8.1.2.1 Prototype architecture
	8.1.2.1.1 Components description

	8.1.2.2 Technical specifications

	8.2 Delivery and usage
	8.2.1 Package information
	8.2.1.1 Backend
	8.2.1.1 Converter
	8.2.1.2 Development Frontend

	8.2.2 Installation
	8.2.2.1 Installation in the Development environment
	8.2.2.2 Installation in the Integration environment

	8.2.3 Instructions for use
	8.2.4 Licensing information
	8.2.5 Download

	9 Trustworthiness System
	9.1 Implementation
	9.1.1 Functional description
	9.1.1.1 Fitting into overall EMERALD Architecture

	9.1.2 Technical description
	9.1.2.1 Prototype architecture
	9.1.2.1.1 Components description

	9.1.2.2 Technical specifications

	9.2 Delivery and usage
	9.2.1 Package information
	9.2.2 Installation
	9.2.3 Instructions for use
	9.2.4 Licensing information
	9.2.5 Download

	10 Conclusions
	11 References
	APPENDIX A: Examination of Graph DB Engines

