
DRAFT
Deliverable D3.5

Evidence assessment and Certification — Integration v1

Editor(s): Nico Haas

Responsible Partner: Fraunhofer AISEC

Status-Version: Final – v1.0

Date: 31.01.2025

Type: OTHER

Distribution level: PU

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 38

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: Evidence assessment and Certification -Integration-v1

Due Date of Delivery to the EC 31.01.2025

Workpackage responsible for the
Deliverable:

WP3 - Evidence assessment and Certification

Editor(s): Fraunhofer AISEC

Contributor(s):
Nico Haas (FHG)
Cristina Regueiro, Iñaki Etxaniz (TECNALIA)
Marinella Petrocchi (CNR)

Reviewer(s):
Michela Fazzolari (CNR)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP4, WP5, WP6

Abstract: Interim integration of the WP3 components in the
EMERALD system.

Keyword List: Integration, WP3, Evidence Assessment, Assessment
Evaluation, Certification, Trustworthiness,
Orchestration, Controls and Metrics

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 38

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 12.12.2024 TOC FHG

v0.2 20.01.2025 First draft FHG, TECNALIA, CNR

v0.3 27.01.2025 Internal QA Review CNR

v0.4 28.01.2025 Address internal QA Review FHG

v0.5 29.01.2025 Final reviewed version TECNALIA

v1.0 31.01.2025 Submitted to the European
Commission

TECNALIA

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 38

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable .. 9

1.2 Document structure ... 9

2 Integration strategy ... 10

2.1 Test Bed Environment ... 10

2.2 DevOps Methodology .. 11

2.3 Continuous Integration .. 11

2.4 Requirements for WP3 Integration ... 11

2.5 Component-specific Integration Status ... 13

2.5.1 Contribution to Non-Functional Requirements... 13

2.5.2 Published APIs ... 13

2.5.3 Integration Status .. 13

3 Integration of Clouditor-Orchestrator ... 15

3.1 Contribution to Non-Functional Requirements ... 15

3.2 Published APIs .. 15

3.3 Integration Status .. 18

4 Integration of Clouditor-Assessment .. 20

4.1 Contribution to Non-Functional Requirements ... 20

4.2 Published APIs .. 20

4.3 Integration Status .. 20

5 Integration of Clouditor-Evidence Store ... 22

5.1 Contribution to Non-Functional Requirements ... 22

5.2 Published APIs .. 23

5.3 Integration Status .. 23

6 Integration of MARI ... 24

6.1 Contribution to Non-Functional Requirements ... 24

6.2 Published APIs .. 25

6.3 Integration Status .. 27

7 Integration of Clouditor-Evaluation .. 28

7.1 Contribution to Non-Functional Requirements ... 28

7.2 Published APIs .. 28

7.3 Integration Status .. 29

8 Integration of RCM .. 30

8.1 Contribution to Non-Functional Requirements ... 30

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 38

www.emerald-he.eu

8.2 Published APIs .. 30

8.3 Integration Status .. 33

9 Integration of TWS .. 34

9.1 Contribution to Non-Functional Requirements ... 34

9.2 Published APIs .. 35

9.3 Integration Status .. 36

10 Conclusions .. 37

11 References ... 38

 List of tables

TABLE 1. INTEGRATION STATUS OF ORCHESTRATOR WITH OTHER EMERALD COMPONENTS 19
TABLE 2. INTEGRATION STATUS OF ASSESSMENT WITH OTHER EMERALD COMPONENTS............................ 21
TABLE 3. INTEGRATION STATUS OF EVIDENCE STORE WITH OTHER EMERALD COMPONENTS 23
TABLE 4. INTEGRATION STATUS OF MARI WITH OTHER EMERALD COMPONENTS 27
TABLE 5. INTEGRATION STATUS OF THE EVALUATION WITH OTHER EMERALD COMPONENTS 29
TABLE 6. INTEGRATION STATUS OF RCM WITH OTHER EMERALD COMPONENTS 33
TABLE 7. INTEGRATION STATUS OF TWS WITH OTHER EMERALD COMPONENTS 36

List of figures

FIGURE 1. INTEGRATION AND PRODUCTION ENVIRONMENTS IN THE CAAS FRAMEWORK 10
FIGURE 2. ORCHESTRATOR API ENDPOINTS FOR ASSESSMENT RESULTS ... 16
FIGURE 3. ORCHESTRATOR API ENDPOINTS FOR METRICS ... 16
FIGURE 4. ORCHESTRATOR API ENDPOINTS FOR CERTIFICATION TARGETS .. 17
FIGURE 5. ORCHESTRATOR API ENDPOINTS FOR CERTIFICATES... 17
FIGURE 6. ORCHESTRATOR API ENDPOINTS FOR CERTIFICATES (PUBLICLY AVAILABLE) 17
FIGURE 7. ORCHESTRATOR API ENDPOINTS FOR CATALOGUES ... 18
FIGURE 8. ORCHESTRATOR API ENDPOINTS FOR AUDIT SCOPES ... 18
FIGURE 9. ASSESSMENT API ENDPOINT FOR EVIDENCE ... 20
FIGURE 10. EVIDENCE STORE API ENDPOINTS .. 23
FIGURE 11. MARI INPUT EXAMPLE FOR METRIC-TO-CONTROL MAPPING ... 25
FIGURE 12. MARI OUTPUT EXAMPLE FOR METRIC-TO-CONTROL MAPPING .. 26
FIGURE 13. MARI INPUT EXAMPLE FOR CONTROL-TO-CONTROL MAPPING ... 26
FIGURE 14. MARI OUTPUT EXAMPLE FOR CONTROL-TO-CONTROL MAPPING .. 27
FIGURE 15. EVALUATION API ENDPOINTS .. 29
FIGURE 16. RCM API ENDPOINTS FOR SECURITY CONTROL FRAMEWORK RESOURCES 31
FIGURE 17. RCM API ENDPOINTS FOR SECURITY CONTROL CATEGORY RESOURCES 31
FIGURE 18. RCM API ENDPOINTS FOR SECURITY CONTROL RESOURCES ... 31
FIGURE 19. RCM API ENDPOINTS FOR TOM RESOURCES .. 32
FIGURE 20. RCM API ENDPOINTS FOR SECURITY METRIC RESOURCES ... 32
FIGURE 21. RCM API ENDPOINTS FOR QUESTIONNAIRE RESOURCES ... 33
FIGURE 22. RCM API ENDPOINTS FOR QUESTIONNAIRE ANSWER RESOURCES .. 33
FIGURE 23. TWS API ENDPOINTS FOR ACCOUNT MANAGEMENT.. 35

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 38

www.emerald-he.eu

FIGURE 24. TWS API ENDPOINTS FOR ROLES MANAGEMENT I ... 35
FIGURE 25. TWS API ENDPOINTS FOR ROLES MANAGEMENT II .. 36
FIGURE 26. TWS API ENDPOINTS FOR INFORMATION ACCESS .. 36
FIGURE 27. TWS API ENDPOINTS FOR INTEGRITY ACCESS .. 36

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 38

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AMOE Assessment and Management of Organisational Evidence

API Application Programming Interface

CaaS Certification-as-a-Service

CI/CD Continuous Integration/Continuous Deployment

CPU Central Processing Unit

DoA Description of Action

EBSI European Blockchain Services Infrastructure

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GUI Graphical User Interface

KB Kilobyte

KR Key Result

NLP Natural Language Processing

gRPC Google Remote Procedure Calls

IaC Infrastructure as Code

JSON JavaScript Object Notation

KR Key Result

MARI Mapping Assistant for Regulations with Intelligence

OAuth open authorization

OSCAL Open Security Controls Assessment Language

RCM Repository of Controls and Metrics

SDLC Software Development Life Cycle

TOM Technical and Organizational Measure

TWS Trustworthiness System

WSGI Web Server Gateway Interface

YAML Yet Another Markup Language

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 38

www.emerald-he.eu

Executive Summary

This deliverable, the first version of “Evidence Assessment and Certification – Integration”,
provides an initial report on the integration details of the WP3 components within the EMERALD
framework. The goal of WP3 is to serve as the central integration point for evidence collection
and knowledge extraction tools, contributing to the development of a Certification-as-a-Service
(CaaS) framework for continuous certification of harmonized cybersecurity schemes, by
assessing the provided evidence to make appropriate certificate decisions. In particular, WP3
and its deliverables address the key result CERTGRAPH (KR2) by implementing the evidence
store as a graph database, OPTIMA (KR3) by providing the optimal set of metrics for a given
control of a security scheme, MULTICERT (KR4) by providing certification decisions for multiple
schemes, and INTEROP (KR7) by providing an interoperability layer for trustworthy systems,
assessment results, and catalogue data [1].

This deliverable provides a comprehensive overview of the current integration status of the WP3
components within the EMERALD framework. The components are the following: Clouditor-
Orchestrator, Clouditor-Assessment, Clouditor-Evidence Store, Clouditor-Evaluation, Mapping
Assistant for Regulations with Intelligence (MARI), Repository of Controls and Metrics (RCM), and
Trustworthiness System (TWS). The primary objective is to ensure that these components work
cohesively to support the Certification-as-a-Service (CaaS) framework. This document outlines
the integration strategy, contributions to non-functional requirements, published APIs, and the
specific integration status of each component. WP1 has already defined the overall DevOps
Methodology and CI/CD strategies [2] and established several requirements for components and
the entire framework, focusing on non-functional aspects [3]. WP3 aims to apply these principles
by focusing on the continuous integration part, which outlines the principles guiding the
integration of different components of the CaaS Framework before their deployment to pilots.

This deliverable is the third WP3 deliverable, after D3.1 and D3.3. While D3.1 focused on the
evidence assessment and certification concepts (first version) [4] and D3.3 addressed the
implementation (initial prototypes) [5], D3.5 focuses on the integration of these components
(first version). Resembling the Software Development Life Cycle (SDLC), the next three WP3
deliverables will complete the process: D3.2 will complete the theoretical phase, D3.4 will
document the implementation of components (final version), and D3.6 will finalize the
integration of components.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 38

www.emerald-he.eu

1 Introduction

This introduction outlines the purpose and structure of Deliverable D3.5, focusing on the interim
integration of WP3 components within the EMERALD framework. It includes details about the
deliverable in section 1.1 and on the document’s structure in section 1.2.

1.1 About this deliverable

The EMERALD project is dedicated to establishing a Certification-as-a-Service (CaaS) framework
that facilitates continuous certification of cybersecurity schemes, including the EUCS. The
project addresses the vital need for improving transparency, accountability, and trust in cloud
services across Europe, by building strong evidence management components and exploring AI
certification schemes.

In this context, WP3 is crucial, as it integrates the evidence collection and knowledge extraction
tools from WP2 and serves as an interface for auditors and pilots via the user interface
developed in WP4. WP3's primary objective is to enhance the CaaS framework by evaluating
evidence to support informed certification decisions.

This deliverable, D3.5, focuses on the interim integration of WP3 components within the
EMERALD framework. It aims to detail the current integration status of each WP3 component,
offering insights into their functional and technical aspects, as well as their alignment with the
overall project objectives.

To summarize, this document provides the integration strategy used in WP3 and the current
status, setting the baseline for future WP3 deliverables.

1.2 Document structure

This document is structured to provide a comprehensive overview of the WP3 components’
implementation. The rest of this document is structured as follows:

Section 2 presents the integration strategy that is applied in WP3. The groundwork of this
integration strategy is done in WP1. We adhere to the principles of continuous integration and
DevOps methodology to ensure a cohesive integration of the components into the EMERALD
framework.

Section 3 through 9 delve into the integration details of the WP3 components, which include
Clouditor-Orchestrator, Clouditor-Assessment, Clouditor-Evidence Store, Mapping Assistant for
Regulations with Intelligence (MARI), Clouditor-Evaluation, Repository of Controls and Metrics
(RCM), and Trustworthiness System (TWS). Each chapter discusses the component-specific
integration status, contributions to non-functional requirements, published APIs, and current
interactions with other components.

Finally, Section 10 provides the conclusion, summarizing the key findings and outlining the next
steps for further integration and refinement of the WP3 components within the EMERALD
project.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 38

www.emerald-he.eu

2 Integration strategy

WP3 components constitute a significant portion of the EMERALD framework and occupy a
central role from an architectural perspective. Therefore, having a well-defined integration
strategy is crucial. WP1 has already established the overall DevOps Methodology and CI/CD
strategies [2] and has defined several requirements for both individual components and the
entire framework, including non-functional aspects [3]. This deliverable emphasises continuous
integration, which encompasses the principles guiding the integration of various components
within the CaaS Framework before they are deployed to the pilots. WP3 is committed to
applying these principles, and this deliverable represents the current state of integration. The
approach to integration in WP3 is informed by the foundational work completed in WP1 and is
elaborated upon in this section.

This section begins with an overview of the test bed environment, the DevOps methodology and
the continuous integration practices used in EMERALD [2] [3]. We leverage the work done in
WP1 and put it into the context of the WP3 components. Then, we elicit from the WP1
requirements the ones that are crucial for the integration of the WP3 components. Section 2.5
provides the structure of the component-specific integration status that is used in the following
sections, offering insights into the current progress of each component's integration.

2.1 Test Bed Environment

The EMERALD CaaS Framework is supported by two different environments: integration and
production (see Figure 1). Each of them consists in a four-node Kubernetes cluster over a
vSphere platform. The components are first deployed in the Integration environment in
containerized form. Once the integration tests have been passed, the components are promoted
to the production environment.

These environments have been developed following an Infrastructure as Code (IaC) approach,
so that the deployment on another vSphere1 platform is easier (vSphere is a cloud computing
virtualization platform from VMware2). For the creation and configuration of the cluster we use
a set of OpenTofu3 and Ansible4 scripts that can be easily adjusted for use on other nodes.

Figure 1. Integration and Production environments in the CaaS framework

1 http://vmware.com/products/cloud-infrastructure/vsphere
2 https://www.vmware.com/
3 https://opentofu.org/
4 https://www.ansible.com/

http://www.emerald-he.eu/
http://vmware.com/products/cloud-infrastructure/vsphere
https://www.vmware.com/
https://opentofu.org/
https://www.ansible.com/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 38

www.emerald-he.eu

2.2 DevOps Methodology

In WP3, we face the challenge of managing multiple components developed by different
partners, making it prudent to follow a common approach. WP1 identified several relevant risks,
such as the potential inability to fully integrate EMERALD components, and challenges, like
integrating and testing all components effectively.

The DevOps methodology emphasizes key characteristics that WP3 is also responsible for,
particularly those that play a crucial role in this deliverable: “Integrate as soon as” and “Keep
requirement traceability”.

2.3 Continuous Integration

WP1 has outlined four key aspects for the continuous integration of components into the
EMERALD framework [2], with WP3 responsible for specific areas. WP3's responsibilities are
highlighted in the following, while the remaining aspects are managed entirely by WP1:

• Packaging components as containers,

• defining the environment defined with Infrastructure as code (IaC),

• ensuring progressive verification, and

• automating the integration process.

For WP3, these requirements entail that each component must provide Dockerfile(s) in the root
of the GitLab repository, to automatically build and deploy images when the code changes.
Utilizing Dockerfiles bridges the development of individual components (in WP2 and WP3) with
operations (in WP1), promoting synergy. While Dockerfiles are preferred, Docker Compose or
custom scripting can be used as alternatives when necessary. Additionally, a gitlab-ci.yml file
must be included in the root of the component’s GitLab repository to specify instructions for the
GitLab CI pipeline, such as defining stages and scripts. It is also encouraged to use integration
tests, ranging from simple health checks to more complex verifications of component
interactions. At this stage of the project, the focus is on the initial deployment in the test bed,
with further integration tests from developers and pilots to follow in the coming months, which
will be part of the subsequent integration deliverable D3.6. The addition of integration tests is
expected to be a collaborative effort between the DevOps team of WP1 and the component
owners. Nonetheless, we will provide an integration status to show how one component is
interacting with others.

2.4 Requirements for WP3 Integration

In this section, we outline the requirements for WP3 integration, derived from the work
completed in WP1 [3]. The EMERALD project encompasses several types of requirements,
including functional and non-functional requirements. The non-functional ones have been
classified as business-driven requirements, UI/UX-related requirements, and requirements
reported by WP1. We have already mapped relevant business-driven and UI/UX requirements
to the functional requirements of individual components. Such functional requirements, e.g.
“ORCH.01 Final certificate decision”, have been addressed in previous WP3 deliverables [4] [5]
and will continue to be discussed in upcoming deliverables. However, since the primary focus of
this deliverable is on the integration of WP3 components into the entire EMERALD framework,
we will only consider a subset of the eight non-functional requirements elicited in WP1, which
were defined in D1.3 [3]:

• WP1.01 Performant Network

• WP1.02 Portability

• WP1.03 Scalability

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 38

www.emerald-he.eu

• WP1.04 Installability

• WP1.05 Documentation

• WP1.06 Agile development

• WP1.07 Observability

• WP1.08 Security

Our objective is to provide information on how much WP3 currently contributes to these
requirements on a component basis. As this deliverable deals with the integration of WP3
components, we narrow the focus to WP1.01, WP1.02, WP1.06, and WP1.08 (marked in bold in
the list above). These requirements are described in more detail below.

• WP1.01: Performant framework. The EMERALD framework should be as performant as
possible. The response time for a user action in normal conditions should not be larger
than a few seconds. The framework components will have to pass automatic integration
tests by the CI/CD pipeline before being integrated into the framework. The validation
task in WP5 will validate both the functionality and the performance of the EMERALD
framework. Apart from these controls, the framework infrastructure will be
continuously monitored, and the implemented environment will allow flexibility to
upgrade the resources if they are falling short (e.g., adding more memory or CPUs to the
Kubernetes nodes or providing extra nodes).

• WP1.02: Portability. The EMERALD framework should be portable and work in any
typical business environment. The framework components will be packaged as
containers, which are portable technology by definition. We will use the Docker
ecosystem to build and share images. For image building, we will support both Docker
and Docker Compose.

• WP1.06: Agile development. The EMERALD framework will be constructed using an
agile methodology, with several cycles of Design, Build, Test, and Deploy. The project
management has already foreseen three incremental releases -V1, V2, V3- in months
M12, M24 and M33. The WP1 team will provide several tools to make this possible, for
example:

o Source control: The GitLab tool allows code management and implementation
of CI/CD processes that help to speed up the development.

o CI/CD processes: GitLab CI allows continuous integration and deployment tasks
to be implemented.

o Integration automation. A GitLab Agent for Kubernetes monitors the framework
repository and will allow deploying and testing new versions of the components
directly, checking the health of the components.

• WP1.08: Security. The EMERALD framework must be secure. This implies correct user
authentication and authorization, secret management, preventing intrusion, etc. For
user management, a specific tool such as Keycloak5 will be installed, which is specifically
designed to manage identity and access. Keycloak supports OpenID Connect, single-sign-
on for all the components and allows synchronization with external identity sources. The
framework will implement role-based access control as an authorization mechanism to
prevent all users from having access to all functionalities. Sensitive information, such as
API keys, certificates, and passwords will be securely stored in the cluster. Additionally,
network policies will be established, utilizing an inverse proxy, to control communication
between containers and services within the cluster, thereby minimizing potential attack
vectors.

5 https://www.keycloak.org/

http://www.emerald-he.eu/
https://www.keycloak.org/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 38

www.emerald-he.eu

2.5 Component-specific Integration Status

In the following sections, we will dive into the current integration status of each WP3
component. Below, we outline the structure and content of these sections to provide a clear
understanding of what each will cover.

2.5.1 Contribution to Non-Functional Requirements

Each component should provide information on its contribution to the following four non-
functional requirements outlined by WP1:

• WP1.01 Performant Network: This section should describe how the component
contributes to network performance, including whether it operates with sufficient
efficiency.

• WP1.02 Portability: Here, contributions to portability are detailed, such as the
availability and use of Dockerfiles or Docker Compose, to ensure the component can be
easily deployed across different environments.

• WP1.06 Agile development: This requirement focuses on contributions to agile
development, including the presence of a gitlab-ci.yml file and the existence of tests.
While automated integration tests for more realistic scenarios are still in development,
the current focus is on ensuring the initial deployment of all components. Integration
tests will be added in the coming months and detailed in the final version of this
deliverable, D3.6.

• WP1.08 Security: Contributions to security are discussed, such as the proper
configuration of Keycloak and the functioning of authentication mechanisms within the
deployed component in the Kubernetes cluster.

2.5.2 Published APIs

This section provides detailed information about the API endpoints for each component. It
includes a description of available endpoints, their functionalities, and how they facilitate
interaction between components.

2.5.3 Integration Status

This section describes the current status of the integration of each component with other
components with which it is designed to interact. The status can be categorized into several
stages, each reflecting the progress made in integrating the component within the EMERALD
framework:

• Not Started: The integration process has not yet begun. No work has been done to
establish connections or interfaces between this component and others.

• Developing API: The component is currently in the process of developing its API. This
stage involves defining how the component will interact with others, but the API is not
yet finalized or available for use.

• API Finished: The API development has been completed and is ready for testing.
However, the component has not yet undergone local tests or integration tests with
other components.

• Tested Locally: The component has undergone local testing, verifying its functionality in
isolation. While it works as intended on its own, it has not yet been tested in conjunction
with other components.

• Connected: This status indicates that the component has successfully established
connections with other components. Data exchange can occur, but further testing is
needed to ensure full compatibility and performance.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 38

www.emerald-he.eu

• Testing: The integration of the component with others is currently being tested. This
phase involves checking interactions and data flow between the components to identify
any issues that may arise.

• Integrated: The component has been fully integrated into the framework. It has passed
all necessary tests, and is working as expected, interacting seamlessly with other
components in the EMERALD system.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 38

www.emerald-he.eu

3 Integration of Clouditor-Orchestrator

This section reports on the integration of the Clouditor-Orchestrator (Orchestrator from now on)
into the EMERALD framework. The Orchestrator plays a central role in the EMERALD framework
by orchestrating several components and providing final certificate decisions.

We provide current information about the contribution to relevant non-functional requirements
of WP1, the API endpoints and the current integration status with other components within the
CaaS framework.

3.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The Orchestrator provides REST APIs for regular and occasional
data exchange, e.g. for user interaction with the EMERALD user interface. However, it also
provides highly efficient connections via gRPC for endpoints where large amounts of data are
expected, e.g. for assessment results sent from the assessment. Therefore, it contributes very
well to the requirement of having an overall performant network in the EMERALD UI.

WP1.02 Portability: We provided a Dockerfile6 at the root of the component in the GitLab
repository. For more information about installation and usage, see D3.3 [5]. Providing a
Dockerfile enables to easily use the Orchestrator in other business environments which use
other CI/CD pipeline technologies or another container orchestration.

WP1.06 Agile development: By using the provided GitLab instance for further development of
the component and providing the gitlab-ci.yml file in addition to the Dockerfile, we highly
contribute to an agile style of development. Every time a change is done in the main branch, a
new image is built and deployed into the testbed. Currently, we leverage unit tests to make the
code more robust. Automated integration tests will be added in the following months.

WP1.08 Security: Like all Clouditor components, the Orchestrator supports OAuth7 to only allow
interaction with the components that are defined in the KeyCloak. Therefore, it refuses
connections to/from components that are not allowed, e.g. from components outside the
cluster. By supporting this zero-trust approach, security is strengthened throughout the
framework.

3.2 Published APIs

The following shows the Orchestrator API endpoints that other components can use (if they are
authenticated). For more details, see the openapi.yaml file in the Clouditor repository8.

6https://git.code.tecnalia.com/emerald/public/components/orchestrator/orchestrator/-
/blob/master/Dockerfile
7 https://datatracker.ietf.org/wg/oauth/about/
8 https://github.com/clouditor/clouditor/blob/main/openapi/orchestrator/openapi.yaml

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/orchestrator/orchestrator/-/blob/master/Dockerfile
https://git.code.tecnalia.com/emerald/public/components/orchestrator/orchestrator/-/blob/master/Dockerfile
https://datatracker.ietf.org/wg/oauth/about/
https://github.com/clouditor/clouditor/blob/main/openapi/orchestrator/openapi.yaml

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 38

www.emerald-he.eu

API endpoints for handling assessment results and tools:

Figure 2. Orchestrator API endpoints for assessment results

API endpoints for handling metrics:

Figure 3. Orchestrator API endpoints for metrics

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 38

www.emerald-he.eu

API endpoints for handling certification targets:

Figure 4. Orchestrator API endpoints for certification targets

API endpoints for handling certificates:

Figure 5. Orchestrator API endpoints for certificates

API endpoint for listing all target certificates without state history:

Figure 6. Orchestrator API endpoints for certificates (publicly available)

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 38

www.emerald-he.eu

API endpoints for handling catalogues:

Figure 7. Orchestrator API endpoints for catalogues

API endpoints for handling audit scopes:

Figure 8. Orchestrator API endpoints for audit scopes

3.3 Integration Status

Currently, the Orchestrator has been successfully deployed on the Kubernetes cluster. The
foundation of this integration lies in the code base located in the EMERALD repository for the
Orchestrator9. To facilitate the utilization of this code base, a Dockerfile was provided in
deliverable D3.3 [5], which has undergone some modifications to ensure the successful
deployment of the Orchestrator. Furthermore, the configuration for continuous integration is
found in the DevOps repository, where the kustomization.yaml file has been updated to include
several manifest files essential for the deployment and operation of the Orchestrator and its
dependencies. These manifest files define various services, deployments, and ingress
configurations for the Postgres database and the Orchestrator itself, in addition to scripts in
configuration maps that handle the Postgres setup.

The EMERALD UI relies on several endpoints provided by the Orchestrator for communication.
The Orchestrator has been previously implemented in MEDINA, including its API endpoints [6] .
It is anticipated that minor modifications might be necessary to align these endpoints with the

9 https://git.code.tecnalia.dev/emerald/public/components/orchestrator/orchestrator

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/components/orchestrator/orchestrator

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 38

www.emerald-he.eu

specific requirements of the EMERALD project, and any adjustments will be discussed and
coordinated with WP4 soon.

The Evaluation, Assessment, and Evidence Store components have been well-tested locally and
in other projects since they are part of the Clouditor toolbox. However, their communication
must be validated in the EMERALD development cluster, e.g. to check if authentication is
correctly configured. The ideal integration test will involve workflows that start with creating
evidence from the collectors, sending assessment results to the Evaluation, aggregating these
results, and sending them back to the Orchestrator for making final certificate decisions.

Regarding the RCM, the API has been completed and requires testing in the EMERALD cluster.
Some refinements may be needed after testing, but the initial set of endpoints related to the
RCM is available.

Table 1 provides a quick summary of the current state of the connections that the Orchestrator
is supposed to interact with.

Table 1. Integration Status of Orchestrator with other EMERALD Components

Component Status Comment

EMERALD UI API Finished Requires coordination with WP4 and testing.

Evaluation Tested Locally Communication needs testing in the EMERALD
Kubernetes cluster.

RCM API Finished Ready for integration testing.

Assessment Tested Locally Communication needs testing in the EMERALD
Kubernetes cluster.

Evidence Store Tested Locally Communication needs testing in the EMERALD
Kubernetes cluster.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 38

www.emerald-he.eu

4 Integration of Clouditor-Assessment

The Clouditor-Assessment component (in the following "Assessment") is responsible for
assessing evidence sent from the Evidence Store. It utilizes metrics (i.e. rules) to effectively
assess evidence. By leveraging the ontology (which is being further developed in WP2), the
assessment process is decoupled from evidence collection. For more details on the metrics and
other technical aspects, see the previous implementation deliverable of WP3 [5]. Additionally,
the Assessment interacts with the Trustworthiness System (TWS) by sending assessment results
to enhance integrity. It is also connected to the Orchestrator by forwarding these results, which
are stored and processed and are essential for making final decisions on certificates.

4.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The Assessment component provides only gRPC APIs since its API
is exclusively used by the Clouditor components that communicate via gRPC. This ensures
efficient data exchange and contributes significantly to the requirement of having an overall
performant network in the EMERALD framework.

WP1.02 Portability: Dockerfile10 is provided in the root of the Assessment component’s GitLab
repository. This enables the Assessment to be easily used in various business environments that
utilize different CI/CD pipeline technologies or container orchestration methods.

WP1.06 Agile development: By utilizing the provided GitLab instance for the development of
the Assessment component and providing a gitlab-ci.yml file in addition to the Dockerfile, we
support an agile development style. Changes in the main branch trigger automatic image builds
and deployments into the testbed. Currently, we leverage unit tests to enhance code
robustness, with automated integration tests planned for the upcoming months.

WP1.08 Security: Like all Clouditor components, the Assessment component supports OAuth to
restrict interactions to the components defined in Keycloak. This ensures that only authorized
components can connect, thereby strengthening security throughout the EMERALD framework.

4.2 Published APIs

The Assessment component only provides one endpoint, namely for assessing evidence that is
sent to it.

Figure 9. Assessment API endpoint for evidence

4.3 Integration Status

The Assessment component is in the process of being deployed in the Kubernetes cluster. The
foundation of this integration lies in the code base located in the EMERALD repository for the
Assessment component. To facilitate the utilization of this code base, a Dockerfile was provided
in deliverable D3.3 [5], which has undergone modifications to ensure the successful deployment

10https://git.code.tecnalia.dev/emerald/public/components/assessment/assessment/-
/blob/master/Dockerfile

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/components/assessment/assessment/-/blob/master/Dockerfile
https://git.code.tecnalia.dev/emerald/public/components/assessment/assessment/-/blob/master/Dockerfile

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 38

www.emerald-he.eu

of the Assessment. Furthermore, the configuration for continuous integration is found in the
DevOps repository, where the kustomization.yaml file was updated to include several manifest
files essential for the deployment and operation of the Assessment and its dependencies.

The communication with the Orchestrator and the Evidence Store components is well-tested
locally and in other projects since they are part of the Clouditor toolbox. However, their
communication must be validated in the EMERALD development cluster, e.g., to check if
authentication is correctly configured.

Currently, the TWS API is under development (see section 9.3). When this is finished and the
Assessment is being deployed as well, the connection to TWS (sending assessment results) must
be tested. Potentially, adaptations in the code within the Assessment repository might be
necessary to ensure that assessment results are forwarded to both the Orchestrator and the
TWS.

Table 2 provides a quick summary of the current state of the connections that the Assessment
component is supposed to interact with.

Table 2. Integration Status of Assessment with other EMERALD Components

Component Status Comment

Orchestrator Tested Locally Communication needs testing in the
EMERALD Kubernetes cluster.

Evidence Store Tested locally Communication needs testing in the
EMERALD Kubernetes cluster.

TWS Developing API (TWS) To be tested.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 38

www.emerald-he.eu

5 Integration of Clouditor-Evidence Store

This section reports on the integration of the Clouditor-Evidence Store (in the following
"Evidence Store") within the EMERALD framework. The Evidence Store plays a vital role in the
overall architecture by serving as the central repository for evidence collected from various
sources. Its primary tasks include retrieving evidence from the evidence collectors, saving them
in a graph-based database, and forwarding evidence to the Assessment and the TWS to enhance
the integrity of the evidence.

We provide current information on the contributions of the Evidence Store to relevant non-
functional requirements defined in WP1, the published API endpoints, and the current
integration status with other components in the EMERALD ecosystem.

The Evidence Store is designed to support various evidence collectors, ensuring flexibility in how
evidence is gathered and stored.

5.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The Evidence Store provides both REST APIs and gRPC endpoints
to support various evidence collectors, accommodating different usage scenarios. For instance,
Clouditor-Discovery utilizes gRPC [7], while AMOE will use the REST API endpoints [8]. For
forwarding the evidence to the Assessment, the Evidence Store will utilize the Assessment's gRPC
endpoint, ensuring highly efficient data transmission of evidence that can scale up significantly
in complex systems such as clouds. Additionally, we plan to leverage the certification graph by
implementing the Evidence Store as a graph database, which could lead to performance
increases.

WP1.02 Portability: A Dockerfile11 is provided in the root of the Evidence Store’s GitLab
repository. This enables the Evidence Store to be easily utilized in various business environments
that employ different CI/CD pipeline technologies or container orchestration methods.

WP1.06 Agile development: By utilizing the provided GitLab instance for the development of
the Evidence Store and including a gitlab-ci.yml file in addition to the Dockerfile, we support an
agile development style. Changes in the main branch trigger automatic image builds and
deployments into the testbed. Currently, we leverage unit tests to enhance the code's
robustness, with automated integration tests planned for future implementation.

WP1.08 Security: Like all Clouditor components, the Evidence Store supports OAuth to restrict
interactions to the components defined in Keycloak. This ensures that only authorized
components can connect, thus strengthening security throughout the EMERALD framework.

11https://git.code.tecnalia.dev/emerald/public/components/evidence-store/evidence-store/-
/blob/master/Dockerfile

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/components/evidence-store/evidence-store/-/blob/master/Dockerfile
https://git.code.tecnalia.dev/emerald/public/components/evidence-store/evidence-store/-/blob/master/Dockerfile

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 38

www.emerald-he.eu

5.2 Published APIs

The Evidence Store provides the following three endpoints for storing evidence, listing all
evidence and getting specific evidence, respectively.

Figure 10. Evidence Store API endpoints

5.3 Integration Status

Currently, the Evidence Store is being deployed on the Kubernetes cluster. The foundation of
this integration lies in the code base located in the EMERALD repository for the Evidence Store.
To facilitate the utilization of this code base, a Dockerfile was provided in deliverable D3.3 [5],
which has undergone modifications to ensure the deployment of the Evidence Store, including
the manifest files that encompass the database.

The connections between the Evidence Store and the Assessment and Clouditor-Discovery [7]
have been well-tested locally and in other projects since they are part of the Clouditor toolbox.
However, their communication must be validated in the EMERALD development cluster, e.g., to
check if authentication is correctly configured. The other evidence collectors, i.e. AMOE [8],
Codyze [9], eknows-e3 [9], and AI-SEC [10], will need to be tested once all the components,
including the Evidence Store, are successfully deployed. These tests may lead to updates in the
ontology and, consequently, updates in the database of the Evidence Store as well.

Table 3 provides a quick summary of the current state of the connections that the Evidence Store
is supposed to interact with.

Table 3. Integration Status of Evidence Store with other EMERALD Components

Component Status Comment

Assessment Tested Locally Communication needs testing in the EMERALD
Kubernetes cluster.

Clouditor-Discovery Tested Locally Communication needs testing in the EMERALD
Kubernetes cluster.

AMOE Not tested Needs to be tested after deployment.

Codyze Not tested Needs to be tested after deployment.

Eknows-e3 Not tested Needs to be tested after deployment.

AI-SEC Not tested Needs to be tested after deployment.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 38

www.emerald-he.eu

6 Integration of MARI

This section reports on the integration of the Mapping Assistant for Regulations with Intelligence
(MARI) component into the EMERALD framework. MARI facilitates certification management by
leveraging its intelligent capabilities to identify relevant metrics for each control, link controls
across multiple certification schemes, and improve both performance and accuracy.

MARI is powered by Natural Language Processing (NLP) techniques that enable automatic
associations between:

• A security control and one or more security metrics.
• Security controls across different certification schemes.

At its core, MARI uses a sentence transformer model to generate embeddings. These allow MARI
to effectively represent the semantic meaning of controls and metrics in a vector space.
Associations are then performed based on the similarity between these embeddings.

This intelligent approach not only saves time and reduces errors but also enhances the overall
performance of certification management. For a more detailed explanation, please refer to
Deliverable D3.3 [5].

6.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: MARI offers REST APIs for control-to-control mappings and
control-to-metric association results. Using NLP tools to obtain associations can be resource-
intensive, but we have implemented optimizations to tackle this challenge. MARI runs its
association processes only when needed and saves the resulting mappings in a dedicated
repository (RCM). By avoiding repeated executions, this approach reduces computational load
and boosts efficiency. As a result, it helps ensure an overall performance network in the
EMERALD UI.

WP1.02 Portability: The Dockerfile12 on the root directory serves as a blueprint for building
containerized environments and streamlining the deployment process for the MARI system. This
file specifies all necessary dependencies, libraries, configurations, and runtime instructions
required to package MARI into a consistent and portable container. This approach enhances
scalability, simplifies integration with CI/CD pipelines, and enables seamless migration to cloud
or on-premises environments.

WP1.06 Agile development: The project’s modular architecture and the included Dockerfile lays
a strong foundation for agile development. Although we do not yet have a CI/CD pipeline in
place, we plan to integrate one, such as GitLab CI, in future updates. This will automate the
process of building and deploying new changes for integration and production environments.
Unit tests have not yet been implemented, but they are planned to be introduced soon to
enhance the project’s stability and reliability.

WP1.08 Security: Future steps will also include the integration of OAuth for secure interactions,
ensuring that only components registered in systems like Keycloak can access the framework.
Once complete, the system will adopt a zero-trust model, blocking unauthorized connections—

12https://git.code.tecnalia.com/emerald/public/components/mari/mari/-
/blob/master/Dockerfile?ref_type=heads

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/mari/mari/-/blob/master/Dockerfile?ref_type=heads
https://git.code.tecnalia.com/emerald/public/components/mari/mari/-/blob/master/Dockerfile?ref_type=heads

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 38

www.emerald-he.eu

such as those from components outside the cluster—and greatly improving the framework's
overall security.

6.2 Published APIs

The logic of mapping controls and metrics is fully implemented and ready for deployment.
However, the APIs have not been published yet. These will handle two types of mappings: metric
to control mapping and control-to-control mapping.

The metric-to-control mapping will link metrics to controls of a schema. The input for this will
include a list of controls and metrics, and the output will provide a mapping between each
control and its associated metrics. Here’s an example:

Input (Example):

[# array of Controls
schema_id: "1",
schema_name: "schema1",
controls: [# Array of controls of the schema
 {# control 1 info
 id: “controlId1”,
 …
 },
 {# control 2 info
 id: “controlId2”,
 …
 },
 {
 …
 }
],
[# Array of metrics
 {# metric 1 info
 Id: “metricId1”
 …
 },
 {# metric 2 info
 Id: “metricId2”
 …
 },
 {
 …
 }
}]

Figure 11. MARI input example for metric-to-control mapping

Output (Example):

[# array of linked controls
 {
 # Control 1 info
 control_id: “controlId1”,
 …
 metrics_mapped:[metricId22, metricId43, …]
 },
 {
 # Control 2 info
 control_id: “controlId2”,
 …
 metrics_mapped:[metricId32, metricId21, …]

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 38

www.emerald-he.eu

 },
 {
 …
 }
]

Figure 12. MARI output example for metric-to-control mapping

The control-to-control mapping, which maps controls between two different schemas, will
follow a similar structure.

Input (Example):

{
schema_id: "1",
schema_name: "schema1",
controls: [# Array of controls of the schema
 {# control 1 info
 id: “controlId11”,
 …
 },
 {# control 2 info
 id: “controlId54”,
 …
 },
 {
 …
 }
},
{
schema_id: "2",
schema_name: "schema2",
controls: [# Array of controls of the schema
 {# control 1 info
 id: “controlId12”,
 …
 },
 {# control 2 info
 id: “controlId33”,
 …
 },
 {
 …
 }
}

Figure 13. MARI input example for Control-to-Control mapping

 Output (Example):

[#array of linked controls

 {# Control info (schema 1)

 control_id: “controlId11”,

 mapped_controls: # Control list (schema 2) [controlId12,

controlId33, … idn]

},

 {# Control info (schema 1)

 control_id: “controlId54”,

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 38

www.emerald-he.eu

 mapped_controls: # Control list(schema 2)[controlId33,

controlId12, … idn]

 }

 …

]

Figure 14. MARI output example for Control-to-Control mapping

Although the endpoints are not yet available, the underlying logic is fully functional. The
src/mock_tool.py script simulates these requests and demonstrates how the API will respond
once published.

The application, built with Flask13, will be served via Gunicorn14. This robust, production-grade
WSGI server is widely used for deploying Python web applications. It was chosen for its ability
to handle multiple concurrent requests efficiently through its pre-fork worker model, which
improves reliability and scalability1516.

Once deployed, the API can handle requests as described above. Future integration through
Kubernetes and Keycloak will ensure secure and authorized access to the API.

6.3 Integration Status

MARI is being deployed on a Kubernetes cluster and interacts solely with the RCM through a
predefined API. The API has been defined, though it has not yet been published. Table 4 provides
a quick summary of the current state of the connections that MARI is supposed to interact with.

Table 4. Integration Status of MARI with other EMERALD Components

Component Status Comment

RCM Developing API Ready for publishing and testing.

13 https://flask.palletsprojects.com/en/stable/
14 https://gunicorn.org/
15 https://docs.gunicorn.org/en/latest/design.html
16 https://flask.palletsprojects.com/en/stable/deploying/gunicorn/

http://www.emerald-he.eu/
https://flask.palletsprojects.com/en/stable/
https://gunicorn.org/
https://docs.gunicorn.org/en/latest/design.html
https://flask.palletsprojects.com/en/stable/deploying/gunicorn/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 38

www.emerald-he.eu

7 Integration of Clouditor-Evaluation

In this section, we report on the integration of the Clouditor-Evaluation (in the following
"Evaluation") within the EMERALD framework. The Evaluation component aggregates multiple
assessment results and serves as the last step before the final certificate decision is made by the
Orchestrator after receiving the evaluation results.

We provide current information on the contributions of the Evaluation component to relevant
non-functional requirements defined in WP1, the published API endpoints, and the current
integration status with other components in the EMERALD ecosystem.

The Evaluation component is designed to communicate exclusively with the Orchestrator,
ensuring efficient gRPC connections that optimize performance.

7.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The Evaluation component communicates exclusively with the
Orchestrator, utilizing pure gRPC connections to maximize performance. This design choice
ensures efficient data exchange and minimizes latency when delivering assessment results,
thereby contributing significantly to the overall performance of the EMERALD framework.

WP1.02 Portability: A Dockerfile17 is provided in the root of the Clouditor-Evaluation’s GitLab
repository. This allows for an easy deployment of the Evaluation component across various
business environments that utilize different CI/CD pipeline technologies or container
orchestration methods. The Dockerfile includes all necessary dependencies and configurations
to facilitate seamless integration.

WP1.06 Agile development: The Clouditor-Evaluation component adopts agile development
practices, utilizing a GitLab repository for code management and including a gitlab-ci.yml file
alongside the Dockerfile. This setup supports continuous integration and deployment, allowing
for rapid iterations and enhancements based on stakeholder feedback. Automated unit tests are
implemented to ensure code reliability, with plans for comprehensive integration tests in future
updates.

WP1.08 Security: Like all Clouditor components, the Evaluation component incorporates OAuth
to restrict access to authenticated components registered in Keycloak. This security measure
ensures that only authorized users and components can interact with the Evaluation
component, thereby enhancing the overall security posture of the EMERALD framework.

7.2 Published APIs

The Evaluation component provides the following three endpoints for starting/stopping an
evaluation, listing evaluation results, or creating an evaluation result manually, respectively.

17https://git.code.tecnalia.dev/emerald/public/components/evaluation/evaluation/-
/blob/master/Dockerfile

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/components/evaluation/evaluation/-/blob/master/Dockerfile
https://git.code.tecnalia.dev/emerald/public/components/evaluation/evaluation/-/blob/master/Dockerfile

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 38

www.emerald-he.eu

Figure 15. Evaluation API endpoints

7.3 Integration Status

Currently, the Evaluation component is being deployed on the Kubernetes cluster. The
foundation of this integration lies in the code base located in the EMERALD repository for the
Evaluation component. To facilitate the utilization of this code base, a Dockerfile has been
provided, which has undergone modifications to ensure the successful deployment of the
Evaluation.

The connections between the Evaluation component and the Orchestrator have been well-
tested locally and in other projects since they are part of the Clouditor toolbox. However, their
communication must be validated in the EMERALD development cluster, e.g., to check if
authentication is correctly configured.

Table 5 provides a quick summary of the current state of the connections that the Evaluation
component is supposed to interact with.

Table 5. Integration Status of the Evaluation with other EMERALD Components

Component Status Comment

Orchestrator Tested Locally Communication needs testing in the
EMERALD Kubernetes cluster.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 38

www.emerald-he.eu

8 Integration of RCM

This section reports on the integration of the Repository of Controls and Metrics (RCM) into the
EMERALD framework.

The RCM serves as a smart catalogue of controls and metrics that provides a central resource in
the EMERALD framework where the certification schemes are stored and managed. Through the
RCM, Compliance Managers and Auditors can obtain all the information related to security
certification schemes. The RCM supports multi-scheme and multi-level certification and
incorporates the definition of the metrics used in EMERALD to assess evidence.

The RCM will provide mechanisms to update the catalogues and maintain a versioning system
and will foster interoperability using OSCAL as exchange format. This feature will allow importing
and exporting catalogues into/from the RCM. The RCM will manage also the mappings
generated by MARI, which provides (i) a list of mapped controls from different security schemes,
and (ii) a list of the metrics mapped for each control.

Regarding its internal design, the RCM is implemented as a microservice that offers a REST API
for external access. Details of the RCM implementation have already been provided in D3.3 [5].

8.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The RCM provides a REST API for data exchange. The main data
sent to other components is the schema data (controls) and the defined metrics. While the data
contained in a call can be large in some cases (when the entire schema is required), these calls
are very few and probably made at the beginning of the user workflow. In general, the EMERALD
UI is the component that request the most data to the RCM. In most of the cases the information
required is of limited extent, and in other cases it can be paginated for a fast UI refresh.

WP1.02 Portability: The RCM is currently dockerized and deployed on Kubernetes. Providing a
Dockerfile18 makes it easier to port the RCM to other environments or use it in another container
orchestration.

WP1.06 Agile development: As with the rest of the components, the RCM code is stored in
GitLab and controlled by a GitLab CI pipeline. Also, its deployment details in Kubernetes are
defined in the corresponding YAML file, so that when any change is done in the main branch, a
new image is built and automatically deployed into the testbed.

WP1.08 Security: the RCM supports OAuth, which is the protocol used in EMERALD for
authentication and authorization. Interaction with the Keycloak component will be provided.
This way, it only interacts with authenticated components and allows only the interactions (calls)
defined for the role of the user logged.

8.2 Published APIs

In the following, we show the principal API endpoints developed so far for the RCM. More
complete information about the API can be obtained by accessing the RCM component with an
administrator account.

18 Each RCM sub-component has its own Dockerfile until they are all unified into a docker-compose. For
example, this is the Dockerfile for the backend component:
https://git.code.tecnalia.com/emerald/public/components/rcm/backend/-/blob/master/Dockerfile

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/public/components/rcm/backend/-/blob/master/Dockerfile

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 38

www.emerald-he.eu

API endpoints for getting schema info:

Figure 16. RCM API Endpoints for Security Control Framework Resources

Figure 17. RCM API Endpoints for Security Control Category Resources

Figure 18. RCM API Endpoints for Security Control Resources

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 38

www.emerald-he.eu

Figure 19. RCM API Endpoints for TOM Resources

 API endpoints for getting metrics info:

Figure 20. RCM API Endpoints for Security Metric Resources

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 38

www.emerald-he.eu

API endpoints for getting questionnaire info:

Figure 21. RCM API Endpoints for Questionnaire Resources

Figure 22. RCM API Endpoints for Questionnaire Answer Resources

8.3 Integration Status

The RCM has already been already deployed on the Kubernetes cluster. Table 6 provides the
current state of connections the RCM is supposed to interact with.

Table 6. Integration Status of RCM with other EMERALD components

Component Status Comment

EMERALD UI Developing API/Connected * Updating / extending the API

Clouditor-Orchestrator Tested Locally

MARI Not Started API defined

AMOE Tested Locally

(*) At the moment, the API is connected with the component-owned UI. As the EMERALD UI is
still under development, it is expected that some changes to the API will be necessary.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 38

www.emerald-he.eu

9 Integration of TWS

This section reports about the integration of the Trustworthiness System (TWS) into the
EMERALD framework. The TWS provides trustworthiness, fairness and transparency to the
evidence and assessment results stored in EMERALD, guaranteeing the integrity and
authenticity of the recorded information. Its main functionality is to allow secure evidence and
assessment results proofs of integrity registration and verification processes.

The TWS is backboned by a Blockchain network to provide information security features, such
as integrity, trustworthiness, and transparency. Initially, it was based on a Quorum19 network,
but Hyperledger Besu20 has been finally considered due to its interoperability with existing semi-
public Blockchain ecosystems such as the European Blockchain Services Infrastructure (EBSI) and
Alastria 21. Due to some internal legal matters, EBSI is not currently onboarding any projects and,
consequently, Alastria has been finally considered. A Blockchain Viewer is included to enhance
usability and allow non-technicians to use the system. Besides, an automatic evidence
verification service has been also considered to improve automatization and facilitate
integration in the EMERALD solution, as manual interaction is not required in this way. More
details can be found in D3.3 [5].

9.1 Contribution to Non-Functional Requirements

The contribution to the relevant WP1 non-functional requirements defined in section 2.5.1 is
listed below.

WP1.01 Performant Network: The TWS exposes REST APIs for regular evidence and assessment
results proofs of integrity registration from the Evidence Store or the evidence collectors. It also
facilitates regular or occasional integrity verification operations through the EMERALD UI. In
both scenarios, the information exchanged is minimal (these are JSON structures of a few KB).
However, the involvement of a Blockchain network usually means lower performance levels. To
address this, the Blockchain network is being configured in the most optimal way in terms of
performance, by adjusting factors such as consensus algorithms, block sizes, etc. to improve the
registration processes. Additionally, users will have access to filters that help reduce the amount
of information to be verified on the Blockchain, further optimizing performance.

WP1.02 Portability: The TWS is composed of two types of components:

• The semi-public Alastria Blockchain network with the deployed Smart Contracts and the
Blockchain Viewer, which are provided as a service for all the EMERALD users.

• The Blockchain client and the verification service, which are locally deployed and have
been dockerized22. More details about installation and usage can be found in D3.3 [5].

WP1.06 Agile development: GitLab is used for the TWS code management and implementation
of CI/CD processes. Additionally, YAML files have been created for the TWS components to be
deployed on the Kubernetes testbeds (Blockchain client and verification service) to automatize
redeployments. Every time a change is done in the main branch, a new image is built and
deployed on the testbed.

19 Quorum Blockchain | Build & Deploy Networks Quickly
20 Welcome | Besu documentation
21 Plataforma de Blockchain
22 Please note that Docker images are not publicly available as the TWS is a proprietary licensed
component ©Tecnalia.

http://www.emerald-he.eu/
https://www.kaleido.io/blockchain-platform/quorum
https://besu.hyperledger.org/
https://alastria.io/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 38

www.emerald-he.eu

WP1.08 Security: The TWS supports Oauth to restrict interactions to authenticated users and
components through Keycloak. Additionally, it is deployed on the Kubernetes testbed where
security is well managed.

9.2 Published APIs

In the following, we show the current API endpoints that can be used by other components (if
they are authenticated). However, we are currently under an updating process due to the
migration process from Quorum to Hyperledger Besu (Alastria) and the new requirements that
come with it. Updated details will be provided in the following deliverable D3.6.

API endpoints for Blockchain account management:

Figure 23. TWS API Endpoints for Account Management

API endpoints for user roles management:

API endpoints for evidence and assessment results proof of integrity registration Figure 24. TWS API Endpoints for Roles Management I

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 38

www.emerald-he.eu

Figure 25. TWS API Endpoints for Roles Management II

API endpoints for evidence and assessment results proof of integrity information access:

Figure 26. TWS API Endpoints for Information Access

API endpoints for evidence and assessment results proof of integrity verification:

Figure 27. TWS API Endpoints for Integrity Access

9.3 Integration Status

Currently, the TWS has been successfully deployed on the Kubernetes cluster. However, it is
under an ongoing migration process from the Quorum to the Alastria Blockchain network. This
migration has slightly delayed the integration process with other EMERALD components. Table
7 provides the current state of connections the TWS is supposed to interact with.

Table 7. Integration Status of TWS with other EMERALD components

Component Status Comment

EMERALD UI Developing API Currently updating the API details due
to the migration process. Evidence Store Developing API

Evidence collectors (Codyze) Developing API

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 38

www.emerald-he.eu

10 Conclusions

In this deliverable, we have provided an initial report on the integration of the WP3 components
within the EMERALD framework. This includes detailed integration strategies, contributions to
non-functional requirements, published APIs, and the current integration status for each
component: Clouditor-Orchestrator, Clouditor-Assessment, Clouditor-Evidence Store, Clouditor-
Evaluation, Mapping Assistant for Regulations with Intelligence (MARI), Repository of Controls
and Metrics (RCM), and Trustworthiness System (TWS).

The primary objective of this deliverable is to document the interim integration status of the
WP3 components, ensuring that they effectively interact and function cohesively within the
EMERALD system. This integration is crucial for supporting the development of a Certification-
as-a-Service (CaaS) framework for continuous certification of harmonized cybersecurity
schemes.

Key contributions of this deliverable include the integration of the WP3 components, supporting
the fulfilment of the key results such as CERTGRAPH (KR2), OPTIMA (KR3), MULTICERT (KR4),
and INTEROP (KR7).

Looking ahead, the next steps will involve refining and enhancing the integration of the WP3
components, culminating in the final versions of the concepts and integrations outlined in the
subsequent deliverables (D3.2, D3.4, and D3.6). These efforts will ensure continuous
improvement and alignment with the project's overarching objectives, ultimately strengthening
the robustness and effectiveness of the EMERALD framework.

http://www.emerald-he.eu/

DRAFT
D3.5 – Evidence assessment and Certification-
Integration-v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 38

www.emerald-he.eu

11 References

[1] EMERALD Consortium, “EMERALD - Annex 1- Description of Action - GA101120688,” 2022.

[2] EMERALD Consortium, “D1.5 DevOps methodology and CI/CD strategy for EMERALD-v1,”
2024.

[3] EMERALD Consortium, “D1.3 EMERALD solution architecture-v1,” 2024.

[4] EMERALD Consortium, “D3.1 Evidence assessment and Certification–Concepts-v1,” 2024.

[5] EMERALD Consortium, “D3.3 Evidence assessment and Certification–Implementation-v1,”
2024.

[6] MEDINA Consortium, “D5.5 – MEDINA integrated solution-v3,” 2023.

[7] EMERALD Consortium, “D2.8 Runtime Evidence Extractor – v1,” 2024.

[8] EMERALD Consortium, “D2.4 AMOE - v1,” 2024.

[9] EMERALD Consortium, “D2.2 Source Evidence Extractor – v1,” 2024.

[10] EMERALD Consortium, “D2.6 ML Model Certification – v1,” 2024.

http://www.emerald-he.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Integration strategy
	2.1 Test Bed Environment
	2.2 DevOps Methodology
	2.3 Continuous Integration
	2.4 Requirements for WP3 Integration
	2.5 Component-specific Integration Status
	2.5.1 Contribution to Non-Functional Requirements
	2.5.2 Published APIs
	2.5.3 Integration Status

	3 Integration of Clouditor-Orchestrator
	3.1 Contribution to Non-Functional Requirements
	3.2 Published APIs
	3.3 Integration Status

	4 Integration of Clouditor-Assessment
	4.1 Contribution to Non-Functional Requirements
	4.2 Published APIs
	4.3 Integration Status

	5 Integration of Clouditor-Evidence Store
	5.1 Contribution to Non-Functional Requirements
	5.2 Published APIs
	5.3 Integration Status

	6 Integration of MARI
	6.1 Contribution to Non-Functional Requirements
	6.2 Published APIs
	6.3 Integration Status

	7 Integration of Clouditor-Evaluation
	7.1 Contribution to Non-Functional Requirements
	7.2 Published APIs
	7.3 Integration Status

	8 Integration of RCM
	8.1 Contribution to Non-Functional Requirements
	8.2 Published APIs
	8.3 Integration Status

	9 Integration of TWS
	9.1 Contribution to Non-Functional Requirements
	9.2 Published APIs
	9.3 Integration Status

	10 Conclusions
	11 References

